Научная литература
booksshare.net -> Добавить материал -> Физика -> Андронов А.А. -> "Теория колебаний " -> 40

Теория колебаний - Андронов А.А.

Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний — М.: Физ-мат литература, 1959. — 916 c.
Скачать (прямая ссылка): teoriyakolebaniy1959.pdf
Предыдущая << 1 .. 34 35 36 37 38 39 < 40 > 41 42 43 44 45 46 .. 335 >> Следующая


X =у, у = tix; (1.69)

исключая время, получим одно уравнение первого порядка, связывающее X и у:

Й-«7- (1'70)

Состояние равновесия в этой системе (определяемое из условия ^ = 0 и ^ = 0) только одно, именно точка х = 0, _у=0. Изо-

-_n IdJL-I

клиной * = 0 0 J является ось ординат (х = 0), а изоклиной

х = оо —coJ служит ось абсцисс (_у=0). Для того чтобы точно 96

ЛИНЕЙНЫЕ СИСТЕМЫ

[ГЛ. I



определить вид траекторий представляющей точки на фазовой плоскости, нужно проинтегрировать уравнение (1.70). Переменные разделяются, интегрирование дает:

У — пхг = С. (1.71)

Это — уравнение семейства равносторонних гипербол, отнесенное к главным осям. При C=O мы получаем две асимптоты этого семейства: у =—Ynx и _у=-(- Yrtx' которые проходят через начало

координат. Начало координат является единственной особой точкой рассматриваемого семейства интегральных кривых. Все же остальные интегральные кривые суть гиперболы, не проходящие через начало координат (рис. 51). Такая особая точка, через которую проходят только две интегральные кривые, являющиеся асимптотами (все остальные интегральные кривые, имеющие вид гипербол, через особую точку не проходят), называется особой точкой типа седла.

Какие же заключения мы можем вывести из полученной картины на фазовой плоскости? Прежде всего, имея в виду, что при положительной скорости координата системы должна возрастать, а при отрицательной — убывать, мы получим во всех четырех квадрантах такие направления движения представляющей точки по фазовой плоскости, которые указаны на рис. 51 стрелками. Рассматривая направления движения представляющей точки, легко убедиться, что, где бы ни находилась представляющая точка в начальный момент (за исключением особой точки и точек на асимптоте у = —Ynx' проходящей через второй и четвертый квадранты), она всегда в конечном счете будет удаляться от состояния равновесия, причем движение ее всегда будет не колебательным, а апериодическим.

Скорость движения представляющей точки в этом случае обращается в нуль также только в особой точке, в остальных же точ-

Рис. 51. § 7] ЛИНЕЙНАЯ СИСТЕМА С ОТТАЛКИВАЮЩЕЙ СИЛОЙ 07

ках фазовой плоскости она отлична от нуля. Таким образом, если даже представляющая точка движется по какой-либо из интегральных кривых вначале по направлению к особой точке (движения во втором и четвертом квадрантах), все же в конце концов она уйдет как угодно далеко от состояния равновесия во всех случаях, кроме движения по асимптоте у =—]/ллг. Следовательно, в рассматриваемом случае состояние равновесия неустойчиво, ибо мы не можем выбрать область 8 (е) так, чтобы представляющая точка, находившаяся в начальный момент в этой области, не вышла в конце концов за пределы заданной области е. Очевидно, что особая точка типа седла всегда неустойчива, и эта неустойчивость связана с самим типом особой точки и характером интегральных кривых, а не с направлением движения представляющей точки по интегральной кривой (если бы направления движений изменились на обратные, то особая точка все же была бы неустойчива).

Что касается движений по асимптоте у = — |/пх, то они представляют собой некоторый особый случай, когда система может только приближаться к состоянию равновесия. При этом движении представляющая точка будет приближаться к началу координат со стремящейся к нулю скоростью, но не достигнет начала координат в конечный промежуток времени. Этот случай так называемого лими-тационного движения мы рассмотрим подробно в дальнейшем. Однако самая возможность такого движения, направленного к состоянию неустойчивого равновесия, ясна из элементарных соображений. Действительно, при любом начальном отклонении маятника от верхнего состояния равновесия всегда можно выбрать такую, и притом вполне определенную, начальную скорость, чтобы кинетическая энергия маятника в начальный момент была точно равна той работе, которую он должен совершить, чтобы как раз достигнуть состояния равновесия. Если эта начальная скорость направлена в сторону положения равновесия, то маятник будет двигаться к этому положению и должен в него прийти. Но, как мы увидим в дальнейшем, если бы удалось совершенно точно задать так подобранную начальную скорость, то маятник достиг бы состояния равновесия только через бесконешо большой промежуток времени.

Однако этот специальный случай движения к положению равновесия, конечно, не нарушает утверждения о том, что состояние равновесия в данном случае неустойчиво. Действительно, при любых начальных условиях, отличающихся от тех специально выбранных, которые точно соответствуют асимптоте у = — упх, система будет всегда удаляться от состояния равновесия. Это движение по асимптоте не может быть никогда точно реализовано, так как оно соответствует одному начальному состоянию, а не конечной области начальных состояний. Такое начальное состояние (вернее, одна «линия начальных состояний») не образует конечной области начальных

4 Теория колебаний 98 ЛИНЕЙНЫЕ СИСТЕМЫ [ГЛ. I

состояний и не может быть совершенно точно задано в системе. Другими словами, если считать, что все начальные состояния равновероятны, то вероятность такого начального состояния, которое соответствует движению по направлению к особой точке, равна нулю. Поэтому всякое реальное движение в системе будет удалять систему от состояния равновесия.
Предыдущая << 1 .. 34 35 36 37 38 39 < 40 > 41 42 43 44 45 46 .. 335 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed