Научная литература
booksshare.net -> Добавить материал -> Математика -> Лоуcон Ч. -> "Численное решение задач метода наименьших квадратов" -> 85

Численное решение задач метода наименьших квадратов - Лоуcон Ч.

Лоуcон Ч., Хенсон P. Численное решение задач метода наименьших квадратов: учебное пособие. Под редакцией Тыртышникова Е.Е. — М.: Наука, 1986. — 232 c.
Скачать (прямая ссылка): louson_h_chisl_resh_zmnk.djvu
Предыдущая << 1 .. 79 80 81 82 83 84 < 85 > 86 87 .. 88 >> Следующая

156. Reid J.K. (ed.). Large sparse sets of linear equations. - New York: Academic Press, 1971.
157. Rice J.R. Experiments on Gram-Schmidt orthogonaSzation. - Math. Сотр., 1966,20, p. 325-328.
158. Rice J.R. The approximation of functions, 2 - advanced topics. - Addison Wesley Publ. Co., 1969.
159. Rice J.R. Running orthogonaHzation. - J. Approximation Theory, 1971,4, p. 332-338.
160. Rice J.R. (ed.). Mathematical software. - New York: Academic Press, 1971.
161. Rice J.R., White J.S. Norms for smoothing and estimation. - SIAM Rev., 1964,6, №3, p. 243-256.
224
162. Rosen E.M. The instrument spreading correction in GPC III. The general shape rtion using singular value decomposition with a nonlinear calibration curve. - Monsanto St. Louis, Mo., 1970.
163. R о s e n J.B. The gradient projection method for nonlinear programming, Part I, и constraints. - J. Soc. Indust. AppL Math., 1960,8, N» 1, p. 181-217.
164. Rutishauser H. Once again the least squares problem. - Lin. Alg. and Its 1., 1968, 1, p. 479-488.
165.Saunders M.A. Large-scale linear programming using the Cholesky factoriza-. - Stanford Univ. Rept. CS-252. - CaHf., Stanford, 1972,64 p.
166. Saunders M.A. Product form of the Cholesky factorization for large-scale ir programming. - Stanford Univ. Rept. CS-301. - Calif., Stanford, 1972, 38 p.
167. S с h u r I. Uber die charakteristischen Wurzeln einer Unearen Substitution mit einer rendung auf die Theorie der Integralgleichungen. - Math. Ann., 1909, 66, p. 488-510.
168. Sherman J., Morrison W.J. Adjustment of an inverse matrix corresponding he changes in the elements of a given column or a given row of the original matrix. - Ann.
h. Stat., 1949, 20, p. 621.
169. Sherman J., Morrison W.J. Adjustment of an inverse matrix corresponding change in one element of a given matrix. - Ann. Math. Stat., 1950,21, № l,p. 124-127.
170. S m i t h G.L. On the theory and methods of statistical inference. - NASA Tech. t. TR R-251. - Washington, 1967,32 p.
171. S t e w ar t G.W. On the continuity of the generalized inverse. - SIAM J. AppL h., 1969,17, N»l, p. 33-45.
.72. S t e w a r t G.W. Incorporating origin shifts into the QR algorithm for symmetric agonal matrices. - Commun. ACM, 1970,13, N» 6, p. 365-367.
173.Stewart G.W. Introduction to matrix computations. - New York: Academic s, 1973.
174. S toe r J. On the numerical solution of constrained least squares problems. -Л J. Numer. Anal., 1971,8, N» 2, p. 382-411.
.75.Strand O.N., Westwater E.R. Statistical estimation of the numerical sotuti->f a Fredhohn integral equation of the first kind. - J. ACM, 1968,15, N» l,p. 100-114. .76. S t r a n d O.N., Westwater E.R. Minimum-RMS estimation of the numerical tion of a Fredholm integral equation of the first kind. - SIAM J. Numer. Anal., 1968,5, , p. 287-295.
77. S w e r 1 i n g P. A proposed stagewise differential correction procedure for satellite Icing and prediction. - J. Astronaut. Sci., 1959,6, N» 3, p. 46-52. .78. Tornheim L. Stepwise procedures using both directions. - Proc. 16th Nat. ting of ACM, 12A4.1-12А4/».
79. T u с к e r A.W. Least distance programming. - Proc. of the Princeton Sympos. lath. Programming. - Princeton: Princeton Univ. Press, p. 583-588. .80. Turing A.M. Rounding-off errors in matrix processes. Quart. J. Mech., 1948, 1, 87-308.
181. T w о m e у S. On the numerical solution of Fredholm integral equations of the first by inversion of the linear system produced by quadrature. - J. ACM, 1963,10, 7-101.
.82. Van der S 1 u i s. Condition numbers and equilibrium of matrices. - Numer. i., 1969,14, p. 14-23.
83. V a n d e r S 1 u i s. Stability of solutions of linear algebraic systems. - Numer. It., 1970,14, p. 246-251.
84.V a r a h J.M.Computing invariant subspaces of a general matrix when the eigensys-is poorly conditioned. Univ. of Wisconsin Math. Res. Center Rept. 962. - Wis., Madison, >, 22 p.
85. Wa m p ler R.H. An evaluation of linear least squares computer programs. - Nat. of Standards J. Res., 1969, 73B, N» 2, p. 59-90.
86.Wedin P.-A. Perturbation bounds in connection with singular value decompo-
i. - BIT, 1972. 12, p. 99-111.
87. We di n P.-A. Perturbation theory for pseudo-inverses. - BIT, 1973, 13, 17-232.
88. W e d i n P.-A. On the almost rank deficient case of the least squares problem. -1973. 13, p. 344-354.
22S
189. Westwater E.R., Strand O.N. Statistical information content of radiation measurements used in indirect sensing. - J. Atmospheric Sciences, 1968,25, № 5, p. 750-758
190. W i 1 к i n s о n J.H. Error analysis of floating-point computation. - Numer. Math., 1960,2, p. 319-34Q.
191. Wi 1 к i n s о n J.H. Householder's method for symmetric matrices. - Numer. Math., 1962,4, p. 354-361.
192. W i 1 к i n sp n J.H. Rounding errors in algebraic processes. - Prentice-Hall, 1963.
193. Wi 1 к i n s о n J.H. Convergence of the LR, QR and related algorithms. - Comput. J., 1965,8, N» l,p. 77-84.
194.Wilkinson J.H. Global convergence of tridiagonal QR algorithm with origin shifts. Lin. Alg. and Its Appl., 1968,1, p. 409-420.
Предыдущая << 1 .. 79 80 81 82 83 84 < 85 > 86 87 .. 88 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed