Численное решение задач метода наименьших квадратов - Лоуcон Ч.
Скачать (прямая ссылка):
84. G r e v i 1 1 e T.N.E. Note on the generalized inverse of a matrix product. - SIAM Rev., 1966,8, p. 518-521.
85. H a 1 m о s P.R. Introduction to Hilbert space. - New York: Chelsea Publ. Co., 1957.
86. H a n s о n R.J. Computing quadratic programming problems: linear inequality and equality constraints. - JPL Sec. 314 Tech. Mem. № 240. - Calif., Pasadena, California Inst, of Technology, Jet Propulsion Lab., 1970.
87.Hanson RJ. A numerical method for solving Fredholm integral equations of the first kind, using singular values. - SIAM J. Numer. Anal., 1971,8, №3, p. 616-622.
88. H a n s о n RJ. Integral equations of immunology. - Commun. ACM, 1972, 15, №10, p. 883-890.
89. H a n s о n R J., D у e r P. A computational algorithm for sequential estimation. -Comput. J., 1971,14, №3, p. 285-290.
90. H a n s о n R.J., L a w s о n C.L. Extensions and applications of the Householder algorithm for solving linear least squares problems. - Math. Сотр., 1969, 23, № 108, p. 787-812.
91. H e a 1 у M J.R. Triangular decomposition of a symmetric matrix. - Appl. Stat., 1968,17, p. 195-197.
92. H e m m e r 1 e W J. Statistical computations on a digital computer. - New York: Blaisdell Publ. Co., 1967.
93. Hestenes M.R. Inversion of matrices by biorthogonalization and related results. -J. Soc. Indust. Appl. Math., 1958,6, p. 51 -90.
94. H e s t e n e s M.R., S t i e f e 1 E. Methods of conjugate gradients for solving linear systems. - Nat. Bur. Stand. J. Res., 1952,49, p. 409-436.
95.Hilsenrath J., Ziegler G.G. et al. OMNITAB, a computer program for statistical and numerical analysis. - Nat. Bur. Stand., Handbook 101, 1966 (Revised 1968), 275 p.
96. H о e r 1 A.E. Optimum solution of many variable equations. - Chem. Eng. Progress, 1959,55,№ll,p.69-78.
97. H о e r 1 A.E. Application of ridge analysis to regression problems. - Chem. Eng. Progress, 1962,58, № 3, p. 54-59.
98. H о e r 1 A.E. Ridge analysis. - Chem. Eng. Progress, 1964, 60, № 50, p. 67-78.
99. H о e r 1 A.E., К e n n a r d R.W. Ridge regression: biased estimation for nonortho-gonal problems. - Technometrics, 1970, 12, p. 55-67,69-82.
100. Hoffman A.J., W i e 1 a n d t H.W. The variation of the spectrum of a normal matrix. - Duke Math. J., 1953,20, p. 37-39.
101.Householder A.S. Unitary triangularization of a nonsymmetric matrix. -J. ACM, 1958,5, p. 339-342.
102. H о useholder A.S. The theory of matrices in numerical analysis. - New York: Blaisdell Publ. Co., 1964.
103. Householder A.S. KWIC index for numerical algebra. - Oak Ridge Nat. Lab. Rept.№ORNL-4778, 1972,_538 p.
104. J а с о b i C.G.J. Uber ein leichtes Verfahren die in der Theorie der S2culirst5run-gen vorkommenden Gleichungen numerisch aufzulosen. - Crelle's J., 1846, 30, p. 297—306.
105. J e n n i n g s L.S., О s b о r n M.R. Applications of orthogonal matrix transformations to the solution of systems of linear and nonlinear equations. - Australian Nat. Univ. Comput. Centre Tech. Rept. №37. - Australia, Canberra, 1970,45 p.
106.Jennrich R.I., Sampson P.l. Remark AS-R3. A remark on algorithm AS-10. Appl. Stat., 1971, 20, p. 117-118.
107. К a h a n W. When to neglect off-diagonal elements of symmertic tri-diagonal matrices. - Stanford Univ. Rept. №CS-42. - Calif., Stanford, 1966.
222
108. К a h a n W. Numerical linear algebra. - Canad. Math. Bull., 1966, 9, №6, p. 757-801.
109. К a 1 m a n R.E. A new approach to linear filtering and prediction problems. -ASME Trans., J. Basic Eng., I960, 82D, p. 35-45.
110. Kammerer W J., N a s h e d M.Z. On the convergence of the conjugate gradient method for singular linear operation equations. - SIAM J. Numer. Anal., 1972, 9. p. 165-181.
Ul.Korganoff A., Pavel-Parvu M. Elements de theorie des matrices carrees et rectangles an analyse numerique. - Paris: Dunod, 1967.
112. Krogh F.T. Efficient implementation of a variable projection algorithm fot nonlinear least squares problems. - Commun. ACM, 1974,17, №3, p. 167-169.
113. La Motte L.R., Hocking R.R. Computational efficiency in the selection of regression variables. - Technometrics, 1970,12, p. 83-93.
114. L a w s о n C.L. Contributions to the theory of linear least maximum approximation. - Thesis. UCLA. - Calif., Los Angeles, 1961, 99 p.
115. Lawson C.L. Applications of singular value analysis. - Mathematical Software. -New York: Academic Press, 1971, p. 347-356.
116. L e r i n g e 6., W e d i n P.-A. A comparison between different methods to compute a vector x which minimizes \\Ax-B\\t when Gx =ft. - Lund. Univ. - Sweden, Lund, 1970, 21 p.
117. Levenberg K. A method for the solution of certain nonlinear problems in least squares. - Quart. Appl. Math., 1944, 2, p. 164-168.
118. Longley J.W. An appraisal of least squares programs for the electronic computer from the point of view of the user. - J. Amer. Stat. Ass., 1967,62, p. 819-841.
119. L у n n M.S., T i m 1 а к e W.P. The use of multiple deflations in the numerical solution of singular systems of equations with applications to potential theory. - IBM Houston Sci. Center, 37.017. - Texas, Houston, 1967.