Научная литература
booksshare.net -> Добавить материал -> Биология -> Шевелуха Е.А. -> "Сельскохозяйственная биотехнология" -> 75

Сельскохозяйственная биотехнология - Шевелуха Е.А.

Шевелуха Е.А., Калашникова С.В., Дегтярев С.В., Кочиева Е.З. Сельскохозяйственная биотехнология — М.: Высшая школа, 1998. — 416 c.
Скачать (прямая ссылка): selskohoztehnika1998.djvu
Предыдущая << 1 .. 69 70 71 72 73 74 < 75 > 76 77 78 79 80 81 .. 180 >> Следующая

Второй вектор состоит из прокариотического гена устойчивости к антибиотику неомицину (NeO), встроенного в раннюю область генома SW 40. Эукариотические клетки чувствительны к аналогу неомицина G418R, который инактивируется продуктом гена (NeOR). Таким образом трансфицированные клетки приобретают способность расти на среде, содержащей G418R.
Наличие селективных маркеров дает возможность вводить в клетки млекопитающих любой ген, если заранее лигировать его с клонированным селективным маркером. Однако дальнейшие исследования показали, что лигирование вне клетки не обязательно. Клетки, поглощающие селективный ген, вместе с ним поглощают и другую ДНК, имеющуюся в кальциевом преципитате. Таким образом, пользуясь методом котрансформации, практически любой клонированный сегмент ДНК можно ввести в культивируемые клетки эукариот, если включить эту ДНК вместе с селективным маркером в состав смеси для образования кальциевого преципитата.
Векторы на основе вирусов. С самого начала работ по трансформации животных клеток вирусы были главными кандидатами на роль векторов для введения чужеродной ДНК. Вирусная инфекция может быть намного более эффективным способом введения ДНК в некоторые клетки, чем трансфекция. При вирусной инфекции каждая клетка может получить большое число копий чужеродного гена. ДНК можно встраивать так, чтобы она находилась под контролем сильных вирусных промоторов, что обеспечит высокий уровень экспрессии гена, и его продукты будут более доступны для исследования.
В последние годы сконструированы многочисленные «челночные» векторы и их рекомбинантные производные, способные к репликации в животной и бактериальной клетках и эффективно экспрессирующие клонируемый ген в животной клетке. Наиболее распространенные векторы состоят из плазмиды pBR 322 и интактного раннего района транскрипции ДНК SW 40, а нужный ген встраивается под контроль промотора поздних генов или дополнительного раннего промотора.
Микроинъекция ДНК в клетки млекопитающих. С появлением прибора для изготовления микропипеток диаметром
0,1—0,5 микрона и микроманипулятора появилась возможность введения чужеродной ДНК в культивируемые клетки путем прямой микроинъекции в ядро. Так, плазмиды, содержащие фрагмент вируса герпеса с геном тимидинкиназы и плазмиды pBR 322, были инъецированы в тк-клетки и было показано, что тк-ген проник в ядра и нормально в них реплицировался.
В принципе, при наличии хорошего оборудования можно за 1 ч инъецировать 500—1000 клеток, причем в лучших экспериментах в 50% клеток наблюдается стабильная интеграция и экспрессия инъецированных генов. Преимущество описываемого метода заключается также в том, что он позволяет вводить любую ДНК в любые клетки, и для сохранения в клетках введенного гена не требуется никакого селективного давления.
Помимо создания клеток-продуцентов, трансформация соматических клеток млекопитающих позволяет изучать тонкие механизмы регуляции экспрессии генов и целенаправленно модифицировать генетический аппарат клетки животных, а при необходимости и человека, что имеет огромное значение для медицинской генетики. Кроме того, культуры клеток млекопитающих могут оказаться эффективным источником выделения некоторых вирусных антигенов с целью получения вакцин для животных и человека. Получение таких вакцинных культур клеток осуществимо при помощи техники рекомбинантных ДНК и эффективных векторов экспрессии для клеток млекопитающих и человека.
Введение генов в эмбрионы и их экспрессия. В настоящее время можно ввести чужеродную клонированную ДНК не только в культивируемые клетки, но и в интактные клетки животных и растений. Задача подобных экспериментов заключается не в создании клеток-продуцентов, но в изменении генома клетки, в результате чего клетка приобретает новые свойства. Если вводить ДНК в клетки многоклеточного организма, то результатом трансформации будет изменение свойств лишь небольшого числа клеток, которые приобрели новый ген или гены. Следовательно, для изменения свойств всего организма следует изменять геном половых клеток, которые перенесут новые свойства потомкам. У растений и животных целесообразно изменять такие свойства, как скорость роста, устойчивость к заболеваниям, способность адаптироваться к новым внешним условиям.
Разработаны способы введения генов в эмбриональные клетки млекопитающих, мух и некоторых растений. От работы с довольно крупными яйцами амфибий перешли к изучению яйцеклеток и эмбрионов мыши, которая представляет наиболее 190
изученное в генетическом отношении млекопитающее. Микроинъекцию клонированных генов производят в один или оба пронуклеуса только что оплодотворенной яйцеклетки мыши. Чаще выбирают мужской пронуклеус, привнесенный сперматозоидом, так как его размеры больше. После инъекции яйцеклетку немедленно имплантируют в яйцевод приемной матери или дают возможность развиваться в культуре до стадии бластоцисты, после чего имплантируют в матку.
Таким образом были инъекцированы гены интерферона и инсулина человека, ген глобина кролика, ген тимидинкиназы вируса простого герпеса и кДНК вируса лейкемии мышей. Число молекул, вводимое за одну инъекцию, колеблется от 100 до 300 000, а их размер — от 5 до 50 кб. Выживает обычно 10—30% яйцеклеток, а доля мышей, родившихся из трансформированных яйцеклеток, варьируется от нескольких до 40%. Таким образом, реальная эффективность составляет около 10%.
Предыдущая << 1 .. 69 70 71 72 73 74 < 75 > 76 77 78 79 80 81 .. 180 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed