Научная литература
booksshare.net -> Добавить материал -> Физика -> Николаев Г.В. -> "Непротиворечивая электродинамика. Книга 1" -> 8

Непротиворечивая электродинамика. Книга 1 - Николаев Г.В.

Николаев Г.В. Непротиворечивая электродинамика. Книга 1 — Томск: Изд-во НТЛ, 1997. — 144 c.
ISBN 5-89503-014-9
Скачать (прямая ссылка): nikolaev1997elektrodin.djvu
Предыдущая << 1 .. 2 3 4 5 6 7 < 8 > 9 10 11 12 13 14 .. 54 >> Следующая


вывод, что магнитное поле движущегося заряда индуцируется либо' одним током переноса заряда (по принципу дальнодействия), в предположении отсутствия какой-либо физической сущности у токов смещения, а следовательно, отсутствия и необходимости в них вообще, либо одними токами смещения (по принципу близкодействия) в предположении, что известные представления о токе переноса движущегося заряда вообще формальны по существу и должны быть полностью исключены из уравнений. Исследования этого вопроса показывают [10], что как с математической, так и с физической точек зрения, предпочтение следует отдать только токам смещения. Но наиболее удивительным при этом является то, что при попытках найти непосредственное решение уравнений Максвелла через токи смещения обнаруживается необходимость допущения у движущегося заряда еще одного вида магнитного поля и т.д.
Как видно из рассмотренного, и в теоретических вопросах классической электродинамики имеется много нерешенных моментов. В процессе же длительного периода поисков выхода из трудностей в электродинамике предпринимались попытки в основном не в изменении ошибочных исходных представлений, а в обходе возникающих трудностей путем усложнения применяемых в электродинамике формально-математических методов. При этом, с целью исключения трудностей и противоречий в электродинамике, использовались все возможные средства математического формализма вместо того, чтобы корректным образом подвергнуть анализу заложенные в электродинамике исходные предпосылки и представления. В результате такого подхода при решении практических задач в классической электродинамике повсеместно используются чисто формальные методы допущений, ограничений, так называемых "дополнительных условий", "нормировок", "калибровок", штрихованных координат, б-функции, формализма обезличивания и других атрибутов математического формализма. В математике хорошо известно, что любые прорехи физических теорий (неточность и ошибочность в исходных предпосылках) всегда приходится "латать заплатами" математического формализма, и современные математические методы электродинамики представляют собой достаточно наглядный пример этому, так как "залатанная" теория по-прежнему остается и противоречивой, и парадоксальной. Невольно возникает вопрос, в чем же основная причина подобной неудовлетворительной ситуации в современной электродинамике? Являются ли все эти выявляемые противоречия следствием только какой-то одной причины или таких причин несколько? Чтобы ответить на этот вопрос, следует обратиться прежде всего к истории и вспомнить хотя бы тот очевидный факт, что свою теорию электромагнетизма Мак

свеял строил, основываясь на допущении реальности существования материальной среды носителя полей. Однако со временем в связи с отказом в физике от любой модели среды физическая сущность из уравнений Максвелла начала постепенно выхолащиваться. Более того, Максвеллу было поставлено в упрек [8], что он, видите ли, не предвидел значительной общности выведенных им уравнений, что "... сейчас мы лучше понимаем (сам Максвелл этого не понимал?! - Г.Н.), что дело в самих уравнениях, а не в модели, с помощью которой они были выведены... Если мы отбросим все строительные леса, которыми пользовался Максвелл, чтобы получить уравнения, мы придем к заключению, что прекрасное здание, созданное Максвеллом, держится само по себе". Просто удивительно! Однако могут же возникнуть и сомнения, а держится ли это "прекрасное здание" действительно само по себе?
Таким образом, модель среды была крайне необходима Максвеллу, чтобы вывести его знаменитые уравнения электродинамики, в которых, например, токи смещения имеют вполне определенную физическую сущность. Но как только уравнения были получены им, от детища этих уравнений - их исходной модели - решили (но уже только после Максвелла!) полностью отказаться, оставив только абстрактно математическую сущность самих уравнений. Не нужно быть дальновидным, чтобы понять, что как только уравнения Максвелла были отделены от их исходной модели, как только они стали представлять собой самостоятельную абстрактно-математическую сущность, с этого же самого момента уравнения Максвелла лишились и своего физического содержания. С этого же самого момента уравнения Максвелла лишились практически любой возможности своего дополнения, изменения и совершенствования. Осталась только одна возможность чисто абстрактного формально-математического совершенствования, что и осуществлялось в действительности теми, кто продолжал поддерживать "прекрасное здание". Нетрудно понять теперь также, чем вызвано то обстоятельство, что уравнения Максвелла в физике со времени их создания остались в своем практически первозданном незавершенном виде. Чтобы не было повода упрекам в голословности таких выводов, покажем сразу на конкретных примерах, в чем проявляется незавершенность построенного Максвеллом и считающимся почему-то "законченным прекрасным зданием" электродинамики, хотя сам Максвелл [14] придерживался иной точки зрения и указывал на наличие принципиальных трудностей в применимости предложенных им уравнений электродинамики, например, к незамкнутым электрическим токам, отдельным элементам тока и т.д.
Предыдущая << 1 .. 2 3 4 5 6 7 < 8 > 9 10 11 12 13 14 .. 54 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed