Научная литература
booksshare.net -> Добавить материал -> Физика -> Левантовский В.И. -> "Механика космического полета в элементарном изложении" -> 95

Механика космического полета в элементарном изложении - Левантовский В.И.

Левантовский В.И. Механика космического полета в элементарном изложении — М.: Наука, 1980. — 512 c.
Скачать (прямая ссылка): mehanikakosmicheskogopoleta1980.djvu
Предыдущая << 1 .. 89 90 91 92 93 94 < 95 > 96 97 98 99 100 101 .. 221 >> Следующая


Наконец, отметим, что пространственная пролетная траектория строится описанным же методом, но, конечно, расчет ее оказывается более трудоемким.

§ 2. Сближение с возвращением к Земле

Ввиду разнообразия траекторий полета к Луне и, что не менее важно, условий входа в сферу действия Луны существует огромное разнообразие пролетных траекторий. Они, однако, могут быть классифицированы как формально, так и с точки зрения практического использования. Будем придерживаться в основном одной из возможных классификаций плоских траекторий [3.1], достоинство которой в ее полноте.

Будем называть сближением с возвращением такой полет, при котором космический аппарат, выйдя из сферы действия Луны, возвращается в ближайшую окрестность Земли. Примером может служить полет, показанный на рис. 82 и 83. Несколько расплывчатое понятие «ближайшей окрестности Земли» мы сейчас не будем уточнять, а вместо этого введем понятие номинальной траектории сближения с возращением, подразумевая под ней траекторию, возвращающуюся в центр Земли. Очевидно, для осуществления такой траектории нужно, чтобы геоцентрическая выходная скорость была или равна нулю, или направлена прямо на центр Земли, или, хотя и направлена прямо от Земли, но не превышала бы местную параболическую скорость. Тогда геоцентрическая траектория после выхода из сферы действия будет радиальной прямой.

Если космический аппарат пролетает над обратной стороной Луны так, что траектория во вращающейся системе отсчета охва- 226

гл. 9. пролетные операции

тывает Луну, то такой случай называют облетом Луны. Примером может служить все та же траектория на рис. 82 и 83. Может быть и так, что хотя с борта космического аппарата и будет видна часть обратной стороны Луны, аппарат не обогнет ее всю и траектория во вращающейся системе отсчета не охватит Луну. В этом случае траекторию сближения с возвращением называют долетной [3.1].

Строгое различие между облетной и долетной траекториями теряется, когда речь идет о пространственном сближении с возвращением. В этом случае говорят просто об облете Луны.

На рис. 84 показаны классы плоских номинальных облетных траекторий, а на рис. 85 — долетных траекторий [3.1]. Верхние траектории соответствуют тесному сближению с Луной, а нижние — слабому. На чертежах одновременно указаны траектории и в геоцентрической, и во вращающейся системах отсчета. Сейчас мы увидим, насколько удобны последние для анализа происходящего.

Прежде всего мы видим, что все облеты Луны приисходят в направлении вращения стрелки часов (кстати, в таком же направлении совершается обход Луны и в селеноцентрическом движении по гиперболе). Облет в направлении, обратном вращению стрелки часов, т. е. в том же направлении, как и движение Луны вокруг Земли, невозможен по той же причине, по которой запрещен вход в тыльную часть сферы действия Луны (см. выше).

Не следует думать, что точки максимального удаления от Земли на рис. 84, в, г соответствуют моментам прохода над центром невидимой стороны Луны. Траектории во вращающейся системе отсчета показывают, что это не так.

Траектория на рис. 85, в не является облетной, на что ясно указывает ее вид во вращающейся системе отсчета. С другой стороны, траектория на рис. 86 [3.14] является облетной, но Луна огибается не против часовой стрелки, как может показаться, а по часовой стрелке. Это можно заметить, сопоставив числовые отметки на орбите Луны и на траектории космического аппарата: сначала аппарат находится левее Луны (если смотреть со стороны Земли), потом позади нее, затем справа. Обратим внимание на то, что и е этом случае роль Луны сводится к спрямлению траектории и приближению ее к Земле, хотя траектория и не является номинальной. Облет получается дальний, и поэтому «восьмерка» вокруг Луны не описывается. Продолжительность полета по номинальным траекториям сближения с возвращением различна. Меньше всего времени для полета требуют облетные траектории, дающие тесное сближение (рис. 84, а, б): 5—10 сут. Дольше всего (15—20 сут) должны продолжаться полеты по долетным траекториям с тесным сближением (рис. 85, а, б).

Облет Луны с тесным сближением (рис. 84, а, б) был бы теоретически возможен даже при очень больщих скоростях, но § 2. сближение c возвращением к земле

227 228

гл. 9. пролетные операции

минимальное расстояние от центра Луны при этом должно было бы быть меньше ее радиуса. Фактически же облетные и долетные траектории с тесным сближением (рис. 84, а, б и 85, а, б) возможны лишь при начальных скоростях, близких к минимальным.

Траектории, показанные на рис. 84, г и 85, а, б, в, возможны исключительно при скоростях отлета с Земли, меньших второй космической скорости: у них участок до входа в сферу действия Луны представляет собой незаконченный эллипс, пройденный более чем наполовину.

«Заострения» на траекториях (рис. 84, в и 85, а, б, г) соответствуют моменту обращения в нуль геоцентрической скорости после

Рис. 86. Траектории дальнего облета Луны [3.14]. Цифры указывают время в часах с момента старта. Штриховая линия — невозмущенная траектория.
Предыдущая << 1 .. 89 90 91 92 93 94 < 95 > 96 97 98 99 100 101 .. 221 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed