Научная литература
booksshare.net -> Добавить материал -> Физика -> Китайгородский А.И. -> "Физика для всех. Электроны" -> 59

Физика для всех. Электроны - Китайгородский А.И.

Китайгородский А.И. Физика для всех. Электроны. Под редакцией Главная редакция физико-математической литературы — М.: Наука, 1979. — 208 c.
Скачать (прямая ссылка): fdvek3kn1979.djvu
Предыдущая << 1 .. 53 54 55 56 57 58 < 59 > 60 61 62 63 64 65 .. 69 >> Следующая


Кстати, стоит заметить, что в работах Герца и несколько десятилетие после него слова «электромагнитные волны» и «радиоволны» не были в ходу. Говорили об электрических волнах ил:и о волнах электродинамической силы,

В своей следующей работе Герц показывает, что в соответствии с требованиями теории Максвелла диэлектрическая среда (брусок серы или парафин)

174

ГЕНРИХ ГЕРЦ (1857—1894) — замечательный немецкий физик, доказавший па опыте с помощью «генератора» и ^резонатора», что колебательный разряд вызывает в пространстве электромагнитные волны. Герц показал, что электромагнитные волны отражаются, преломляются и интерферируют, чем подтвердил теорию Максвелла. Опыты Генриха Герца положили начало радиотехнике. В своей первой радиопередаче изобретатель радио Александр Степанович Попов, в 1895 з. передал два слова: ^Генрих Герц».

сказывается на частоте электромагнитного поля. Получивши эту статью, редактор журнала Гельмгольц ответил Герцу открыткой: «Манускрипт получен. Браво. В четверг пошлю в печать».,

Огромное впечатление* на физиков того времени произвела работа Герца, в которой он доказал отражение электромагнитных волн. Волны отражались от цинкового экрана величиной 4 мХ2 м. Вибратор находился на расстоянии 13 м от экрана и на высоте 2,5 м от пола. Настроенный резонатор был помещен^на той же высоте и перемещался между вибратором и экраном. Располагая резонатор на различных расстояниях от экрана и наблюдая интенсивность искры, Герц уста- ж навливает наличие максимумов и минимумов, характерных ддя картины интерференции, носящей название стоячей волны. Длина волны оказалась близкой к 9,6 м.

Я хотел бы подчеркнуть, что в то время никто^ле мог сказать, какой материал* должен служить зеркалом для электромагнитных волн. Это сейчас мы знаем, что волны таких длин не проникают в металл, а отражаются от него.

Стремясь получить дополнительные доказательства теории Максвелла, Герц уменьшает геометрические размеры своих приборов и доводит длину волны до 60 см. В 1888 г. он публикует работу «О лучах электрической силы».' Ему удалось концентрировать электромагнитную энергию с помощью параболических зеркал. В фокусе зеркал размещались стерженьки вибратора и резонатора. Пользуясь этими зеркальными приемником и передатчиком, Герц показывает, что электромагнитные волны не проходят через металлы, а деревянные экраны волн не задерживают.

На рис. 5.7 показано, как Герц доказал поляризацию электромагнитных волн. На пути электромагнитного луча, созданного вибратором AA, помещалась решетку С из медных проволок. Поворачивая решетку, Герц показал, что интенсивность искры в резонаторе В — В меняется. Когда проволоки были параллельны электрическому вектору и- перпендикулярны осям вибраторов, луч не проходил. Поперечность электромаг-г нитной волны была доказана.

Наконец, для изучения преломления волн Герц изготавливает из асфальтовой массы призму весом более

176

Рис. 5.7.

тонны. Коэффициент преломления асфальта можно было измерить для волн длиной 60 см с ^большой точностью. Он оказался равным 1,69.

Доказательство существования электромагнитных волн, измерение их длины, установление законов отражения, преломления и поляризации! И все это — результат трехлетней рабдты. Есть от чего прийти в восхищение.

КЛАССИФИКАЦИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Физикам приходится иметь дело с электромагнитным излучением огромного диапазона. Электромагнитное излучение тока городской частоты абсолютно ничтожно. Практическая возможность уловить электромагнитное излучение начинается от частот порядка десятков килогерц, т. е. длин волн, равных сотням километров. Наиболее короткие волны имеют длину порядка десятитысячных долей микрометра, т. е. частоты порядка миллиардов гигагерц.

Радиоволнами называют то электромагнитное излучение, которое создается электротехническими сред-

Фиэика для всех, кн. 3

177

ствами, т. е. за счет колебания электрических токов. Самые короткие длины радиоволн — это сотые доли миллиметра.

От нескольких сотен микрометров и ниже простирается область длин* волн излучения, возникающего за счет 'энергетических переходов внутри молекул, внутри дтомов и внутри атомных ядер. Этот диапазон, как мы видим, существенно перекрывается с радиодиапазоном. Видимое световое из-Рис. 5.8. лучение занимает узкий

участок. Его пределы — это 0,38—0,74 микрометра. Более длинноволновое излучение, полученное не радиотехническими способами, называют инфракрасным, а более коротковолновое — ультрафиолетовым вплоть до длин около 0,1 микрометра. 9

Электромагнитное излучение, получаемое в рентгеновских трубках, перекрывается с областью ультрафиолетовых волн и доходит до 0,01 микрометра, где в свою очередь перекрывается с областью гамма-лучей. Последние возникают. при ядерном распаде, ядерных реакциях и столкновениях между элементарными частицами. '

Основной характеристикой любого электромагнитного излучения является его спектр. Спектром называют график, на котором по вертикали отложена интенсивность (т. е. энергия, приходящаяся в единицу времени на единицу площади), а по горизонтали — длина волны или частота. Самым простым спектром является монохроматическое («одноцветное») излучение. Его график состоит из одной линии очень малой ширины (рис. 5.8, вверху).. Степень монохроматичности линии
Предыдущая << 1 .. 53 54 55 56 57 58 < 59 > 60 61 62 63 64 65 .. 69 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed