Научная литература
booksshare.net -> Добавить материал -> Физика -> Феинман Р. -> "КЭД Странная теория света и вещества" -> 19

КЭД Странная теория света и вещества - Феинман Р.

Феинман Р. КЭД Странная теория света и вещества — M.: Наука, 1988. — 144 c.
ISBN 5-02-013883-5
Скачать (прямая ссылка): stsiv1988.djvu
Предыдущая << 1 .. 13 14 15 16 17 18 < 19 > 20 21 22 23 24 25 .. 54 >> Следующая


Но по мере сближения кубиков в какой-то момент детектор в Q начинает щелкать! Когда просвет почти закрыт и остается только несколько ближайших траекторий, стрелки траекторий, направленных в Q, также складываются, потому что и между ними почти не остается разницы вс времени (см. рис. 34). Конечно, обе результирующие стрелки невелики, так что через такую маленькую дырочку ни в каком направлении не проникнет много света, но детектор в Q щелкает почти так же часто, как и в Р! Следова-

51

тельно, когда вы стараетесь слишком сильно сжать пучок света, чтобы заставить его распространяться только по прямой, он отказывается подчиняться и начинает расширяться *).

Итак, представление о том, что свет распространяется прямолинейно,— это приближенное представление, которым удобно пользоваться при описании явлений знакомого нам мира; оно подобно грубому приближению, согласно которому угол отражения от зеркала равен углу падения.

Так же, как мы смогли при помощи некоторой хитрости заставить свет отражаться от зеркала под многими углами, мы можем похожим приемом заставить свет идти из одной точки в другую многими путями.

Прежде всего, чтобы упростить ситуацию, я нарисую вертикальную штриховую линию (см. рис. 35) между источником света и детектором (линия ничего не обозначает, это просто искусственная линия) и сообщу, что мы будем рассматривать только траектории, изображенные ломаными, которые состоят из двух отрезков. График, показывающий время для каждой траектории, выглядит так же, как и в случае с зеркалом (но на этот раз я поверну его боком): кривая начинается в Л, наверху, затем она отклоняется влево, потому что траектории в середине короче и движение по ним занимает меньше времени. Наконец, кривая идет назад, вправо.

Теперь немного развлечемся. Давайте «перехитрим свет» так, чтобы движение по всем траекториям занимало одинаковое время. Как это сделать? Каким образом самый короткий путь, через М, может занять точно такое же время, как и самый длинный путь, через Л?

*) Это пример действия «принципа неопределенности»: существует некая «дополнительность» между знанием того, где свет проходит между кубиками, и того, куда идет потом,— точное знание и того и другого невозможно. Я хотел бы поставить принцип неопределенности на его историческое место: когда впервые стали высказываться революционные идеи квантовой физики, люди все еще пытались осмыслить их при помощи старомодных представлений (вроде того, что свет распространяется прямолинейно). Но в определенный момент старомодные представления начинали подводить, поэтому появилось предостережение, смысл которого был таков: «Ваши старомодные представления ни к черту не годятся, когда...» Если вы избавитесь от всех старомодных представлений и вместо этого будете пользоваться идеями, о которых я говорю в этих лекциях — будете складывать стрелки для всех способов, которыми может случиться событие,— принцип неопределенности будет не нужен!

52

Мы знаем, что свет распространяется в воде медленнее, чем в воздухе; медленнее он распространяется и в стекле (с которым нам гораздо проще иметь дело!). Поэтому, поместив стекло нужной толщины на кратчайшем пути, проходящем через М, мы можем сделать так, что время для этой

Время

А

\ / Ч

/ ч

Рис. 35. Анализ всех возможных траекторий из 5 в P упрощается, если учитывать только ломаные линии с одним изломом (лежащие в одной плоскости). Результат такой же, как и в более сложном, реальном случае: получается кривая времени с минимумом в том месте, где набегает наибольший вклад в результирующую стрелку

траектории будет в точности равно времени для траектории, проходящей через А. Траектории, соседние с М, чуть длиннее, и там не потребуется такое толстое стекло (см. рис. 36).

Бремя

А

И

Рис. 36. Природу можно «обмануть*, замедлив свет, идущий по более коротким траекториям. Для этого используется стекло такой толщины, чтобы движение по ьсем траекториям занимало одно и то же время. При этом все стрелки указывают в одном направлении и дают огромную результирующую стрелку — очень много света! Такое стекло, служащее для увеличения вероятности того, что свет из источника соберется в одной точке, называется фокусирующей линзой

Чем ближе мы подходим к А, тем тоньше должно быть стекло, которое надо ставить, чтобы замедлить свет. Если мы все тщательно рассчитаем и подберем для каждой тра-

53

ектории стекло нужной толщины, чтобы увеличить время движения, то все интервалы времени получатся одинаковыми. Когда мы нарисуем стрелки для каждого пути, по которому мог бы пойти свет, мы увидим, что нам удалось одинаково развернуть все стрелки — а ведь этих стрелочек миллионы — и конечный результат будет представлять собой необыкновенно длинную, просто громадную результирующую стрелку! Вы, конечно, догадались, что я описываю: это фокусирующая линза. Уравнивая все интервалы времени, мы можем фокусировать свет — мы можем получить очень высокую вероятность того, что свет попадет в определенную точку, и очень низкую — что он появится где-нибудь еще.
Предыдущая << 1 .. 13 14 15 16 17 18 < 19 > 20 21 22 23 24 25 .. 54 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed