Научная литература
booksshare.net -> Добавить материал -> Химия -> Степанов Н.Ф. -> "Квантовая механика и квантовая химия" -> 6

Квантовая механика и квантовая химия - Степанов Н.Ф.

Степанов Н.Ф. Квантовая механика и квантовая химия — М.: Мир, 2001. — 519 c.
ISBN 5-03-003414-5
Скачать (прямая ссылка): stepanov.djvu
Предыдущая << 1 .. 2 3 4 5 < 6 > 7 8 9 10 11 12 .. 175 >> Следующая

Глава I
Исходные положения квантовой механики
§ 1. Основные понятия и постулаты квантовой механики
Квантовая механика возникла в конце 20-х годов XX столетия1. Будучи тесно связанной по своим исходным представлениям с классической механикой, она обладает и рядом заметно отличающихся и необычных для классической механики сторон, затрудняющих ее понимание при первоначальном знакомстве с нею. К ней, как и к любой другой науке, надо привыкнуть. Тем не менее, сегодня это уже хорошо сформировавшаяся наука, которую широко используют в физике, химии, молекулярной биологии и ряде других разделов естествознания, и без знания основ которой немыслимо понимание языка современной теоретической химии.
а. Исходные понятия. Как и в любом другом разделе теоретической физики, в квантовой механике имеется система понятий, которые вводятся без каких-либо дополнительных определений и предполагаются интуитивно очевидными, например понятия пространства и времени. К ним относится и понятие элементарной частицы как некоторого точечного образования, характеризуемого массой т и зарядом а также, если есть в том необходимость, - и другими величинами (например спином, см. § 5 гл.II). Вместо элементарных частиц часто используют термин "микрочастица", имеющий более широкое толкование, поскольку под микрочастицей может подразумеваться и система, составленная из элементарных частиц, но выступающая в рамках рассматриваемого круга задач как единое точечное бесструктурное образование с фиксированными массой, зарядом и другими характеристиками. Так, при рассмотрении атомных и молекулярных систем к микрочастицам относят атомные ядра, внутренней структурой которых в подавляющем большинстве химических задач можно пренебречь.
1 Ее предшественница, так называемая старая квантовая теория, была введена датским физиком Нильсом Бором в 1913 г. при объяснении спектров атома водорода; далее она была развита рядом исследователей, в частности немецким физиком Арнольдом Зоммерфельдом.
17
Положение частицы в пространстве определяется при выбранной системе отсчета (системе координат) ее радиусом-вектором, либо координатами этого вектора. Помимо положения каждой частицы в системе микрочастиц считается заданным и момент времени I, Предполагается, что наряду с указанными исходными понятиями в квантовой теории определены и многие другие аналоги представлений классической механики, такие как импульс частицы, ее момент импульса и т.п. Однако, прежде чем говорить об этих величинах, остановимся на том, как определяется состояние классической и квантовой систем микрочастиц.
В классической механике состояние системы в данный момент времени считается определенным, если известны положения всех входящих в нее материальных точек и их скорости (либо импульсы), а также связи, ограничивающие возможные перемещения этих точек. В квантовой механике ситуация оказывается более сложной. Предполагается, что мы не можем точно указать положение каждой частицы в системе, эти положения могут быть известны нам лишь с вполне определенными вероятностями их появления (при измерении). Квантовое состояние считается заданным, если задана некоторая функция пространственных переменных частиц и времени, которая позволяет вычислить по определенным правилам не только указанные вероятности, но и все остальные характеристики системы частиц. Такая функция, называемая функцией состояния, или волновой функцией, очевидно, должна удовлетворять некоторому уравнению (или уравнениям), которое необходимо ввести наряду с правилами, позволяющими вычислить все требуемые характеристики системы. Это уравнение по аналогии с уравнениями классической механики может быть названо уравнением движения.
Как уже сказано, характерной особенностью квантовой механики с первых шагов ее создания была тесная связь с идеями и аппаратом классической механики. В частности, предполагалось, что уравнения квантовой механики, представленные в достаточно общей форме, должны переходить при определенных условиях, например, при достаточно больших массах частиц, в обычные уравнения классической теории. Другими словами, если сформулировать каким-то образом понятие предельного перехода, то при таком переходе квантовые уравнения должны приобретать вид и смысл уравнений класической механики. Это утверждение, названное принципом соответствия, играет фундаментальную роль в квантово-механических построениях. Оно было весьма сущест-
18
венным на этапе создания квантовой теории, оно продолжает быть таковым и сегодня, когда развитие теории привело к необходимости выявления множества общих для обеих механик результатов и способов их описания, в частности при рассмотрении динамических задач.
б. Функция состояния и операторы наблюдаемых.
Поскольку положения частиц в пространстве и, соответственно, их скорости (или импульсы) не определены, то в квантовой механике нет понятия движения частиц в том смысле, в котором оно используется в классической теории. В общем случае меняются лишь вероятности для каждой частицы системы быть в заданной точке пространства. Это приводит к тому, что нет и перемещений частиц как таковых, а следовательно, и нет смысла говорить, например, о скорости перемещения той или иной частицы. Подобные наводящие соображения подсказывают, что функция состояния, определяющая поведение квантовомеханической системы, должна быть функцией лишь координат частиц и времени, но не их скоростей или импульсов: Ч* = Ч*(г19 г2,..., г^; /).
Предыдущая << 1 .. 2 3 4 5 < 6 > 7 8 9 10 11 12 .. 175 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed