Научная литература
booksshare.net -> Добавить материал -> Биология -> Кудряшов Ю.Б. -> "Основы радиационной биофизики" -> 44

Основы радиационной биофизики - Кудряшов Ю.Б.

Кудряшов Ю.Б., Беренфельд Б.С. Основы радиационной биофизики — Москва, 1982. — 304 c.
Скачать (прямая ссылка): osnoviradicionnoybiofiziki1982.djvu
Предыдущая << 1 .. 38 39 40 41 42 43 < 44 > 45 46 47 48 49 50 .. 144 >> Следующая

Проводимый в последние годы анализ кислородного и температурного последействия выявил существование «скрытых» повреждений, требующих для своей реализации дополнительного, нерадиационного воздействия во время облучения и после него, т. е. возникло представление о том, что 'в ряде случаев одного лишь лучевого поражения недостаточно для инактивации макромолекулы.
Перспективно использование модифицирующих агентов для выяснения причинно-следственной связи между различными типами поражения макромолекулы и характером изменения ее биологических свойств. Логика такого исследования состоит в следующем. Пусть модифицирующий агент видоизменяет характер инактивации макромолекулы, например в его присутствии облученный фермент сохраняет сродство к субстрату, хотя и утрачивает каталитическую активность, а без модифицирующего агента облучение инактивирует обе функции макромолекулы. В этом случае интересно сопоставить структурные повреждения, возникающие в присутствии модифицирующего агента и без него. Если в отсутствие модифицирующего агента наблюдаются какие-то дополнительные структурные повреждения, то можно предположить, что с ними связана потеря субстратной специфичности облученного фермента. Для проверки такого предположения необходимы строгие количественные исследования, например сопоставление радиационно-химического выхода данного типа структурного поражения и выхода инактивированных молекул, концентрационных зависимостей и т. д. Если это возможо, следует вызвать такие же повреждения иными, нерадиационными воздействиями и оценить, к каким последствиям для фермента это приведет.
* * *
Материал этой главы посвящен рассмотрению биофизических подходов к анализу механизмов инактивации биомакромолекул ионизирующей радиацией. В общем ряду радиобиологических проблем этот вопрос имеет первостепенное значение: лучевое поражение любой биологической системы, от вируса до многоклеточного организма, начинается с инактивации небольшого числа молекул, составляющих биологический субстрат. В то же время облученные сухие гомогенные препараты ферментов или нуклеиновых кислот (— «идеальная» система для биофизического анализа. В живой клетке на первичные радиационные повреждения макромолекул накладываются эффекты, гораздо более сложные и пока еще не определенные: расширение шоражения за счет метаболических реакций, восстановление пораженной молекулы за счет функционирования репарирующих систем, эффекты, связанные с 'гетерогенностью облучаемой системы, присутствием воды и низкомолекулярных субстратов и т. д. Следовательно, изу-
чение механизмов инактивации сухих препаратов — только первый необходимый этап на пути познания природы радиобиологических процессов, протекающих при облучении клетки и организма.
Изучение инактивирующего действия ионизирующей радиации на макромолекулах представляет еще и самостоятельный интерес как метод анализа функциональных свойств отдельных субмоле-кулярных структур. В этом случае ионизирующее излучение выступает в качестве уникального «инструмента» биофизического анализа ферментов, нуклеиновых кислот и различных надмолекулярных 'комплексов: ДНП, хроматина, рибосом и т. д. Используя математический аппарат теории мишени, можно на основании экспериментальных кривых «доза — эффект» установить геометрические размеры мишени, ответственной за данный тип инактивации макромолекулы. Модифицируя условия облучения, в ряде случаев можно добиться возникновения селективных поражений макромолекулы и оценить их роль в эффекте инактивации (например, если в результате облучения фермента разрушается определенный аминокислотный остаток и при этом нарушается конформация активного центра и исчезает сродство к субстрату, то можно предположить, что данный структурный участок регулирует конформацию активного центра). Преимущество радиационного воздействия состоит еще и в том, что с его помощью можно добиться возникновения узколокальных повреждений в любом участке молекулы, при этом другие структурные звенья останутся неповрежденными (существенно, что при этом макромолекулы могут оставаться сухими, находиться в вакууме или в любой газовой смеси, быть замороженными до любой температуры или параллельно подвергаться иным воздействиям).
Предстоит еще многое сделать для воссоздания целостной картины, которая развертывается от момента ионизации или возбуждения макромолекулы, поглотившей энергию излучения, до ее химического повреждения и инактивации. Необходим глубокий теоретический анализ спектра первичных возбуждений макромолекул, детальное выяснение процессов миграции энергии и заряда внутри молекулы и между молекулами. Экспериментальные исследования должны установить спектр первичных продуктов к характер их дальнейших преобразований до возникновения стабильного радиационного повреждения. И наконец, в содружестве с биохимиками предстоит выяонить вклад определенных типов структурного повреждения в эффект инактивации.
ГЛАВА IV
ИНАКТИВАЦИЯ МАКРОМОЛЕКУЛ В ВОДНЫХ РАСТВОРАХ. НЕПРЯМОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ
Предыдущая << 1 .. 38 39 40 41 42 43 < 44 > 45 46 47 48 49 50 .. 144 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed