Научная литература
booksshare.net -> Добавить материал -> Физика -> Савельев И.В. -> "Курс общей физики Том 1 Механика, колебания и волны, молекулярная физика" -> 143

Курс общей физики Том 1 Механика, колебания и волны, молекулярная физика - Савельев И.В.

Савельев И.В. Курс общей физики Том 1 Механика, колебания и волны, молекулярная физика — М.: Наука, 1970. — 508 c.
Скачать (прямая ссылка): kursobsheyfizikit11970.djvu
Предыдущая << 1 .. 137 138 139 140 141 142 < 143 > 144 145 146 147 148 149 .. 150 >> Следующая


При определенных условиях разные фазы одного и того же вещества могут находиться в равновесии друг с другом, соприкасаясь между собой. Равновесие двух фаз может иметь место лишь в определенном интервале температур, причем каждому значению температуры T соответствует вполне определенное давление р, при котором возможно равновесие. Таким образом, состояния равновесия двух фаз изобразятся на диаграмме (р, Т) линией

P = f (T). (147.1)

Так, например, равновесие между жидкостью и ее насыщенным паром возможно, как мы видели в § 119, лишь в температурном интервале, заключенном между температурой тройной точки и критической темпер ату -

490
рой. График функции (147.1) в этом случае представ* ляёт собой кривую упругости насыщенного пара.

Три фазы одного и того же вещества (твердая, жидкая и газообразная, или жидкая и две твердые) могут находиться в равновесии только при единственных значениях температуры и давления, которым на диаграмме (р, Г) соответствует точка, называемая тройной. Эта точка лежит на пересечении кривых равновесия фаз, взятых попарно.

В термодинамике доказывается в согласии с опытом, что равновесие более чем трех фаз одного и того же вещества невозможно.

Переход из одной фазы в другую обычно сопровождается поглощением или выделением некоторого количества тепла, которое называется скрытой теплотой перехода, или просто теплотой перехода. Существуют переходы из одной кристаллической модификации в другую, которые не связаны с поглощением или выделением тепла. Такие переходы называются фазовыми переходами второго рода в отличие от обычных переходов, называемых фазовыми переходами первого рода. Мы ограничимся рассмотрением только переходов первого рода.

§ 148. Испарение и конденсация

В жидких и твердых телах при любой температуре имеется некоторое количество молекул, энергия которых оказывается достаточной для того, чтобы преодолеть притяжение к другим молекулам, покинуть поверхность жидкости или твердого тела и перейти в газообразную фазу. Переход жидкости в газообразное состояние называется испарением, переход в газообразное состояние твердого тела носит название сублимации.

Все твердые тела без исключения в той или иной степени сублимируют. У одних веществ, таких, например, как углекислота, процесс сублимации протекает с заметной скоростью; у других веществ этот процесс при обычных температурах столь незначителен, что практически не обнаруживается.

При испарении и сублимации тело покидают наиболее быстрые молекулы, вследствие чего средняя энергия оставшихся молекул уменьшается и тело охлаждается.

491
Чтобы поддерживать температуру испаряющегося (или сублимирующегося) тела неизменной, к нему нужно непрерывно подводить тепло. Тепло q, которое необходимо сообщить единице массы вещества для того, чтобы превратить ее в пар, находящийся при той же температуре, какую имело вещество до испарения, называется удельной теплотой испарения (или сублимации).

При конденсации тепло, затраченное при испарении, отдается обратно: образующаяся при конденсации

жидкость (или твердое тело) нагревается.

Произведем оценку теплоты испарения жидкости. При испарении некоторого количества жидкости переходящие в газообразную фазу молекулы должны совершить работу против сил, действующих в поверхност-ном слое (см. § 143). Эти силы действуют на пути, равном толщине слоя г. Обозначив среднюю величину силы на этом пути /, а число молекул в единице массы через п', работу против сил, действующих в поверхностном слое, можно представить в виде n'fr. Процесс испарения сопровождается увеличением объема вещества, вследствие чего'сопряжен с необходимостью совершения работы против внешних сил. Если.испарение происходит при постоянном внешнем давлении р, работа против внешних сил равна p{VI,-V*), где Vn и Уж — удельные объемы пара и жидкости. Обе указанные выше работы совершаются за счет теплоты испарения q. Таким образом, __

q = n'fr + p{V'„-V'm). (148.1)

Как следует из выражения (148.1), теплота испарения уменьшается с температурой. В самом деле, с повышением температуры плотность насыщенного пара растет, что приводит к уменьшению сил, действующих на молекулу в поверхностном слое. Уменьшается также различие в удельных объемах насыщенного пара и жидкости. Следовательно, при повышении температуры оба слагаемых в (148.1) убывают. При критической температуре теплота испарения обращается в нуль.

Рассмотрим процесс установления равновесия между жидкостью и ее паром. Возьмем герметичный сосуд, частично заполненный жидкостью (рис. 327), и допустим, что первоначально из пространства над жидкостью

492
вещество было полностью удалено. Вследствие процесса испарения пространство над жидкостью станет наполняться молекулами. Молекулы, перешедшие в газообразную фазу, двигаясь хаотически, ударяются о поверхность жидкости, причем часть таких ударов будет сопровождаться переходом молекул в жидкую фазу. Ко* личество молекул, переходящих в единицу времени в жидкую фазу, очевидно, пропорционально количеству ударяющихся о поверхность молекул, которое, как мы знаем [см. (99.9)], в свою очередь пропорционально nv, т. е. растет с давлением р. Следовательно, наряду с испарением протекает обратный процесс перехода молекул из газообразной в жидкую фазу, причем интенсивность его растет по мере увеличения плотности молекул в пространстве над жидкостью. При достижении некоторого, вполне определенного (для данной температуры) давления количества молекул, покидающих жидкость и возвращающихся в нее, станут равны. Начиная с этого момента, плотность пара перестает изменяться. Между жидкостью и паром установится подвижное равновесие (рис. 327), которое будет существовать до тех пор, пока не изменится объем или температура системы.
Предыдущая << 1 .. 137 138 139 140 141 142 < 143 > 144 145 146 147 148 149 .. 150 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed