Научная литература
booksshare.net -> Добавить материал -> Физика -> Бутиков Е.И. -> "Физика для углубленного изучения 3. Строение и свойства вещества" -> 92

Физика для углубленного изучения 3. Строение и свойства вещества - Бутиков Е.И.

Бутиков Е.И., Кондратьев А.С., Уздин В.М. Физика для углубленного изучения 3. Строение и свойства вещества — М.: Физматлит, 2004. — 335 c.
Скачать (прямая ссылка): fizikadlyauglubleniyaizucheniya3stroenieisvoystva2004.pdf
Предыдущая << 1 .. 86 87 88 89 90 91 < 92 > 93 94 95 96 97 98 .. 151 >> Следующая


Термодинамический подход не позволяет вскрыть внутреннюю природу необратимости реальных процессов в макроскопических системах. Опираясь на эксперимент, он только фиксирует факт необратимости (второй закон термодинамики). Молекулярно-кинетический подход позволяет проанализировать причины такой необратимости реальных процессов и определенной направленности энергетических превращений в природе.

Гипотетический вечный двигатель. Рассмотрим с точки зрения молекулярно-кинетической теории модель гипотетического «вечного» двигателя второго рода, изображенную на рис. 79. Предположим, что этот вечный двигатель работает следующим образом: газ самопроизвольно собирается в левой половине цилиндра, после чего поршень подвигают вплотную к газу. При таком перемещении внешние силы работы не совершают, так как собравшийся в левой половине газ не оказывает давления на поршень. Затем подводим к газу теплоту и заставляем его изотермически расширяться до преж-
206

V. ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

него объема. При этом газ совершает работу за счет подводимой теплоты. После того как поршень перейдет в крайнее правое положение, будем ждать, пока газ снова не соберется самопроизвольно в левой половине сосуда, и затем повторяем все снова. В результате получилась периодически действующая машина, которая совершает работу только за счет получения теплоты от окружающей среды.

Молекулярно-кинетическая теория позволяет сразу объяснить, почему такое устройство не будет работать. Как мы видели, вероятность того, что газ, содержащий большое число молекул, хотя бы один раз самопроизвольно соберется в одной половине сосуда, ничтожно мала. И уж совершенно невозможно себе представить, чтобы это могло повторяться раз за разом по мере работы машины.

Теплота

Рис. 79. Один из вариантов «вечного» двигателя второго рода

О необратимых процессах. Теперь можно указать, какой смысл вкладывается в понятие необратимого процесса: процесс является необратимым, если обратный процесс в действительности почти никогда не происходит. Строгого запрета для такого процесса нет — он просто слишком маловероятен, чтобы его можно было наблюдать на опыте. Так, рассмотренный пример вечного двигателя второго рода основывался на предположении о возможности самопроизвольного сосредоточения газа в одной половине сосуда. Такой процесс является обратным для процесса расширения газа в пустоту. Расширение газа в пустоту представляет собой один из наиболее ярких примеров необратимых процессов — обратный процесс в макроскопической системе никогда не наблюдался.

Таким образом, с точки зрения представлений статистической механики второй закон термодинамики утверждает, что в природе в макроскопических системах процессы развиваются в таком направлении, когда менее вероятные состояния системы заменяются на более вероятные. Такая интерпретация второго закона термодинамики была впервые предложена Больцманом.

При рассмотрении флуктуаций плотности идеального газа было выяснено, что состояния газа, при которых распределение молекул близко к равномерному, встречаются гораздо чаще, чем далекие от равновесия состояния с сильно неравномерным распределением молекул. Другими словами, состояния с неравномерным распределением молекул по объему, при которых число молекул в правой и левой половинах сосуда сильно различаются, имеют гораздо меньшую вероятность, чем состояния с почти равномерным распределением, близким к равновесному. Итак, необратимый процесс приближения
§ 24. ПРИРОДА НЕОБРАТИМОСТИ ТЕПЛОВЫХ ПРОЦЕССОВ

207

к равновесию — это переход к наиболее вероятному макроскопическому состоянию.

Необратимые процессы и разрушение порядка. Сказанное выше о природе необратимости реальных процессов можно сформулировать и несколько иначе. Можно сказать, что необратимый переход к равновесию — это переход от в сильной степени упорядоченных неравновесных состояний к менее упорядоченным, хаотическим состояниям.

При расширении газа в пустоту начальное состояние, когда газ занимает часть предоставленного ему объема, является в значительной мере упорядоченным, в то время как конечное состояние теплового равновесия, когда газ равномерно распределен по всему объему сосуда, является совершенно неупорядоченным.

Другой пример — направленный пучок молекул газа, входящий в откачанный сосуд. Установление равновесного максвелловского распределения молекул по скоростям представляет собой необратимый процесс перехода системы из упорядоченного состояния, когда все молекулы имеют почти одинаковые по модулю и направлению скорости, в конечное состояние, характеризующееся полной хаотичностью движения молекул.

С этой точки зрения легко понять устанавливаемую вторым законом термодинамики определенную направленность энергетических превращений в замкнутой системе. Когда тело получает некоторое количество теплоты за счет совершения механической работы, то это означает необратимое превращение кинетической энергии упорядоченного макроскопического движения в кинетическую энергию хаотического движения молекул. Превращение теплоты в работу, наоборот, означает превращение энергии беспорядочного движения молекул в энергию упорядоченного движения макроскопического тела — такой самопроизвольный переход, как мы видели, в принципе возможен, но исключительно маловероятен.
Предыдущая << 1 .. 86 87 88 89 90 91 < 92 > 93 94 95 96 97 98 .. 151 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed