Научная литература
booksshare.net -> Добавить материал -> Биология -> Голубев Г.Н. -> "Геоэкология" -> 48

Геоэкология - Голубев Г.Н.

Голубев Г.Н. Геоэкология: Учебник — М.: Изд-во ГЕОС, 1999. — 338 c.
ISBN 5-89118-059-6
Скачать (прямая ссылка): geoekologiya.pdf
Предыдущая << 1 .. 42 43 44 45 46 47 < 48 > 49 50 51 52 53 54 .. 131 >> Следующая

б) типичной продолжительности его пребывания в атмосфере, и
в) объема эмиссии газа.
Комбинация первых двух факторов носит название "Относительный парниковый потенциал" и выражается в единицах от потенциала С02. Она является удобным показателем текущего состояния парникового эффекта и используется в международных дипломатических переговорах. Относительная роль каждого из парниковых газов весьма чувствительна к изменению каждого фактора и к их взаимозависимости, и потому определяется весьма приближенно.


58 60 62 64 66 68 70 72 74 76 78 60 82 84 86 88 90 92 94
Рис. 9. Средняя месячная концентрация углекислого газа в атмосфере за 1957-1993 гг. на Гавайских островах (Mayна Лоа) и Южном полюсе
Основные особенности газов с парниковым эффектом в атмосфере по состоянию в основном на 1994 г. приведены в табл. 6.
Таблица 6. Основные особенности газов с парниковым эффектом
Газ Концентрация, частей на миллиард Прирост концентрации, % за год Относительный парниковый потенциал
газа на ближайшие 20 лет Продолжительность существования в атмосфере, гг. Антропогенное усиление парникового эффекта, ватт/м2 Диоксид углерода, С02 358000 0,4 1 50-200 1,56 Метан, СН4 1720 0,6 12 12-17 0,47 Оксид азота, Ы20 312 0,25 290 120 0,14 Хлорфтор-углероды* 0,1-0,3 0-5 300-8000 12-50 0,15 ?Данные взяты для наиболее типичных для 1995 г. веществ, как используемых, так и запрещенных к использованию, но еще находящихся в атмосфере.

V. 2.2. Газы с парниковым эффектом
Для понимания глобального парникового эффекта необходимо понять роль каждого из газов. Как видим, картина отличается большой сложностью и изменчивостью во времени.
Роль водяного пара, содержащегося в атмосфере, в общемировом парниковом эффекте велика, но трудно определима однозначно. При потеплении климата содержание водяного пара в атмосфере будет увеличиваться, тем самым усиливая парниковый эффект.
Диоксид углерода, или углекислый газ (СО2), отличается, по сравнению с другими парниковыми газами, относительно низким потенциалом парникового эффекта, но довольно значительной продолжительностью существования в атмосфере - 50-200 лет и сравнительно высокой концентрацией. Доля диоксида углерода в парниковом эффекте составляет в настоящее время около 64%, но эта относительная величина неустойчива, поскольку зависит от изменяющейся роли других парниковых газов.
Концентрация углекислого газа в атмосфере в период с 1000 по 1800 гг. составляла 270-290 частей на миллион по объему (ррпту). Затем она стала неуклонно увеличиваться с соответствующим возрастанием парникового эффекта. В 1958 г., когда начались постоянные инструментальные наблюдения, она была 315 ррту, а к 1994 г. она достигла 358 ррту и продолжает расти (рис. 9). Расчеты показывают, что при современном уровне эмиссии углекислого газа концентрация его в атмосфере будет неуклонно увеличиваться, достигнув 500 ррту к концу XXI века. Стабилизация концентрации может быть достигнута посредством значительного сокращения объема выбросов.
Рассмотрим причины наблюдаемого роста концентрации, основываясь на антропогенной части глобального биогеохимического цикла углерода.
Основной источник поступления углекислого газа в атмосферу -сжигание горючих ископаемых (угля, нефти, газа) для производства энергии. Около 80% всей энергии в мире производится за счет тепловой энергетики. Поступление углекислого газа в атмосферу за период с 1860-по 1990 гг. увеличивалось в среднем на 0,4% в год. В течение 1980-х гг. она составляла 5,5±0,5 млрд. т (гигатонн) углерода в год.

Сокращение лесов тропического и экваториального пояса, деградация почв, другие антропогенные трансформации ландшафтов приводят в основном к высвобождению углерода, которое сопровождается его окислением, то есть образованием С02. В целом эмиссия в атмосферу за счет преобразования тропических ландшафтов составляет 1,6±1,0 млрд. т углерода. С другой стороны, в умеренных и высоких широтах Северного полушария отмечается, в целом, преобладание восстановления лесов над их исчезновением. Для построения органического вещества лесов в процессе фотосинтеза углекислый газ забирается из атмосферы. Это количество, в пересчете на углерод, равно 0,5±0,5 млрд. т. Пределы точности, равные самой величине, указывают нам также на все еще весьма низкий уровень понимания антропогенной роли в некоторых звеньях глобального биогеохимического цикла углерода.
В атмосфере в результате деятельности человека ежегодно дополнительно накапливается 3,3±0,2 млрд. т углерода в виде углекислого газа.
Мировой океан поглощает из атмосферы (растворяет, химически и биологически связывает) около 2,0±0,8 гигатонн углерода в виде углекислого газа. Суммарные величины поглощения углекислого газа океаном пока непосредственно не измеряются. Они рассчитываются на основе моделей, описывающих обмен между атмосферой, поверхностным и глубинным слоями океана.
Таблица 7. Глобальный баланс антропогенного углерода, млрд. т. за год
Источники СР2
Поступление в атмосферу (1) Поступление в атмосферу вследствие сжигания горючих ископаемых и производства цемента
Предыдущая << 1 .. 42 43 44 45 46 47 < 48 > 49 50 51 52 53 54 .. 131 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed