Руководство по технологии и тестированию систем WDM - Жирар А.
Скачать (прямая ссылка):
CD-
ГЛАВА 2
ОСНОВЫ
качестве передатчиков лазеры с внешней модуляцией, что нашло практическое применение во всех современных высокоскоростных системах передачи.
Дальнейшее увеличение скорости передачи с помощью технологии TDM требует разработки и внедрения исключительно сложных и дорогостоящих электронных компонентов. Вся стоимость их разработки ложится на плечи оптической промышленности, так как в других областях (например, компьютерные технологии) эти скорости еще не достигнуты. Точность синхронизации сигналов систем передачи, предъявляемые при модуляции тока лазеров, мультиплексировании и демультиплексировании электрических сигналов на сверхвысоких частотах, очень высоки.
Технология помехоустойчивого кодирования FEC (Forward Error Correction) может увеличить энергетический потенциал системы на несколько дБ. FEC давно используется в беспроводной и спутниковой связи. В этой технологии данные перед передачей кодируются с добавлением избыточных битов. Избыточность позволяет исправлять случайные ошибки в цифровом сигнале без повторной передачи. В технологии FEC обнаружение и исправление ошибок передачи битов выполняется аппаратурой, как правило, на физическом уровне. Однако помехоустойчивое кодирование не в состоянии исправить все ошибки передачи, которые возникают из-за различных причин (хроматическая дисперсия, поляризационная модовая дисперсия, перекрестные помехи, и т. д.).
Поляризационная модовая дисперсия PMD (Polarization Mode Dispersion), также как и хроматическая дисперсия, приводит к уширению импульсов и начинает заметно влиять на качество передачи при высоких скоростях (частотах модуляции). PMD возникает из-за того, что оптическое излучение с различными состояниями поляризации оптического сигнала SOP (State of Polarization) распространяется вдоль волокна с различными скоростями. Это стохастическое явление, поэтому снижать влияние PMD особенно сложно. Известные практические способы не позволяют полностью компенсировать PMD в волокне.
Несмотря на все трудности, скорость передачи в цифровых сетях связи постоянно растет. В 1999 году была достигнута скорость 40 Гбит/с (уровень STM-256). Несмотря на то, что коммерческое внедрение линий связи уровня STM-256 маловероятно до конца 2001 года, крупнейшие телекоммуникационные компании уже сообщили о проведении успешных лабораторных испытаний систем передачи со скоростью 40 Гбит/с на линиях связи протяженностью 1 00 км и более. Экспериментальные линии связи уровня STM-256 пока еще не в полном объеме поддерживают функции ввода и вывода каналов ADM (Add/Drop Multiplexing) и кросс-коммутации.
Ожидается скорое появление на рынке оборудования цифровых систем передачи SDH/SONET, обеспечивающих мультиплексирование потоков уровня STM-1 6 и STM-64 в высокоскоростные потоки уровня STM-256. По всей видимости, первые линии связи уровня STM-256 будут применяться в сетях городского и регионального масштаба. По мере увеличения дальности передачи и появления более совершенных методик компенсации различных негативных факторов линии связи уровня STM-256 будут находить все более широкое применение. Возможно, в некоторых случаях для увеличения дальности таких линий связи коммерчески более выгодно будет использовать регенерацию сигнала.
ГЛАВА 2
ОСНОВЫ
Одной из перспективных технологий сверхдальней связи считается солитонная передача данных. Солитон - это особый вид светового импульса, который при распространении в определенной среде, и в частности - оптическом волокне, сохраняет свою форму (преимущественно гауссову). При усилении солитона через равные расстояния, теоретически он может распространяться сколь угодно далеко. Это связано с тем, что показатель преломления среды, в которой распространяется солитон, имеет небольшую добавку, которая квадратично зависит от мощности сигнала. При малых мощностях сигнала этой добавкой можно пренебречь. Однако при распространении солитона, представляющего собой волновой пакет большой мощности, нелинейные явления и хроматическая дисперсия при определенных условиях могут компенсировать изменения формы солитона. При этом солитон обладает исключительной стабильностью параметров распространения и устойчивостью к внешним возмущениям. Несмотря на то, что дальность распространения солитонов и ограничена затуханием сигнала в волокне, эта технология может успешно применяться для передачи сигналов большой мощности на большие расстояния. При солитонной передаче сигналов используют кодирование с возвращением к нулю (рис. 2.2).
1—
Кодирование без возврата к нулю
1—
Кодирование с возвратом к нулю (50% длительности)
Рис. 2.2 Кодирование с возвращением к нулю
Независимо от того, станет ли технология TDM универсальным протоколом, таким как IP, или будет адаптирована в соответствии со стандартами SONET/SDH, в ближайшие годы ее будут использовать многие операторы. «Второе дыхание» технологии TDM обеспечили успехи в изучении солитонов. Какие бы проблемы не возникали в технологии TDM и какие бы пути их решения не использовались, ни одна существующая технология не может заменить ее в настоящее время. Однако технология WDM может использоваться параллельно с технологией TDM для повышения ее эффективности.