Научная литература
booksshare.net -> Добавить материал -> Электротехника -> Блантер С.Г. -> "Электрооборудование нефтяной и газовой промышленности" -> 88

Электрооборудование нефтяной и газовой промышленности - Блантер С.Г.

Блантер С.Г., Суд И.И. Электрооборудование нефтяной и газовой промышленности — М.: Недра, 1980. — 478 c.
Скачать (прямая ссылка): elektroobnef1980.djvu
Предыдущая << 1 .. 82 83 84 85 86 87 < 88 > 89 90 91 92 93 94 .. 178 >> Следующая

С заклиниванием долота связан также процесс передачи колонне бурильных труб кинетической энергии, запасенной во вращающихся частях поверхностного оборудования привода ротора. С точки зрения уменьшения кинетической энергии, передаваемой трубам, целесообразно иметь привод ротора с минимальным моментом инерции вращающихся частей.
Следовательно, при роторном бурении привод ротора должен иметь мягкую механическую характеристику, по возможности минимальный момент инерции и ограниченный максимальный момент.
Увеличение частоты вращения ротора, т. е. долота, влечет за собой увеличение механической скорости бурения. Для основного типа долот, применяемых в бурении, — шарошечных
242
вследствие увеличения износа долота при высоких частотах вращения время работы долота в забое и проходка на долото тем больше, чем меньше частота вращения ротора. Наряду с сокращением срока службы долота при больших частотах вращения ротора повышается износ бурового оборудования вследствие увеличения вибрации. Поэтому оптимальные значения частоты вращения ротора (так же как и нагрузки на долото) целесообразно определять экономическим расчетом, исходя из минимальной стоимости 1 м проходки.
Как показали расчеты, бесступенчатое регулирование частоты вращения ротора при бурении глубоких скважин может обеспечить увеличение механической скорости бурения до 30% и рейсовой скорости — до 20%. Диапазон регулирования частоты вращения, определенный технико-экономическим расчетом, составляет 5 : 1—7 : 1. Регулировать частоту вращения целесообразно при постоянном моменте.
Поскольку при помощи ротора выполняются аварийные и некоторые вспомогательные работы, привод ротора должен иметь оперативный реверс.
В отечественных буровых установках в основном применен групповой привод лебедки и ротора. Так как приводная мощность лебедки значительно больше приводной мощности ротора, приводные двигатели при роторном бурении оказываются недогруженными. В некоторых серийных и вновь разрабатываемых буровых установках предусмотрен индивидуальный привод ротора.
Схема индивидуального электропривода ротора ио системе генератор-двигатель буровой установки «Уралмаш-5000Э» показана на рис. 7.2,o. Генератор ротора ГР(П 142-6к, 400 кВт, 460 В) входит в состав трехмашинного преобразовательного агрегата, вращаемого синхронным двигателем СДА (СДЗ 13-34-6, 500 кВт, 6 кВ, 1000 об/мин).
Генератор ГP питает двигатель постоянного тока привода ротора ДР (П 127-8к, 250 кВт, 330 В). Обмотка возбуждения генератора ГР питается от реверсивного однофазного тиристорного преобразователя, управляемого магнитным усилителем, а обмотка возбуждения двигателя ДР — от нереверсивного однофазного тиристорного преобразователя, который управляется своим магнитным усилителем. В качестве датчика скорости ротора используется тахогенератор постоянного тока.
Двигатель ДР вращает ротор через двухскоростную механическую передачу, что дает возможность обеспечить требуемые скорости и моменты как в рабочем, так и в аварийном режимах. В схеме управления предусмотрены защиты и блокировки от превышения тока в якорной цепи машин ГР и ДР, от исчезновения поля двигателя ДР и отключения асинхронных двигателей вентиляторов, охлаждающих ДР и ГР. При указанных нарушениях работы привода автоматически отключается
243
питание обмоток возбуждения генератора и двигателя, что делает невозможной дальнейшую работу. Путем применения различных обратных связей в системе автоматического управления формируются требуемые статические и динамические характеристики привода. В последних разработках для питания двигателя ДР используется реверсивный силовой тирис-торпый преобразователь, аналогичный представленному на рис. 3.13.
Многие задачи привода ротора весьма просто решаются путем применения электромагнитных муфт, устанавливаемых между приводными двигателями и ротором. Пуск и регулирование частоты вращения ротора связаны с потерями в электромагнитных муфтах, которые нагревают последние. В случае необходимости большого и плавного диапазона изменения частоты вращения ротора электромагнитные муфты с водяным (жидкостным) охлаждением вполне могут обеспечить надежную работу. Однако, как указывалось ранее, для привода ротора в большинстве случаев необходим ограниченный диапазон регулирования частоты вращения. При этом находят применение более простые электромагнитные муфты с воздушным охлаждением в сочетании с многоскоростной коробкой перемены передач, вращаемой многоскоростными асинхронными двигателями. Возможность плавного регулирования частоты вращения в диапазоне, определяемом допустимыми потерями в муфте, позволяет в данном случае на каждой механической и электрической ступени иметь дополнительное плавное регулирование частоты вращения в ограниченном диапазоне. Это обеспечивает в целом довольно широкий диапазон регулирования частоты вращения ротора.
Помимо регулирования частоты вращения ротора электромагнитные муфты ограничивают передаваемый момент, а также придают большую гибкость приводу ротора при производстве аварийных работ, связанных с освобождением из скважины упущенного бурового инструмента. Они обеспечивают плавное закручивание и раскручивание бурильных труб и возможность кратковременного получения высоких значений моментов на низких скоростях при ликвидации аварий. В зависимости от системы и рода привода лебедки и ротора могут быть осуществлены различные схемы применения электромагнитных муфт.
Предыдущая << 1 .. 82 83 84 85 86 87 < 88 > 89 90 91 92 93 94 .. 178 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed