Научная литература
booksshare.net -> Добавить материал -> Биология -> Кудряшов Ю.Б. -> "Основы радиационной биофизики" -> 7

Основы радиационной биофизики - Кудряшов Ю.Б.

Кудряшов Ю.Б., Беренфельд Б.С. Основы радиационной биофизики — Москва, 1982. — 304 c.
Скачать (прямая ссылка): osnoviradicionnoybiofiziki1982.djvu
Предыдущая << 1 .. 2 3 4 5 6 < 7 > 8 9 10 11 12 13 .. 144 >> Следующая

В. П. Парибок высказал предположение, согласно которому известная способность репаративных систем устранять радиационные повреждения ДНК — это лишь одно из проявлений неспе-цифичеокой реакции живой системы на повреждающее воздействие. Иначе говоря, предполагается, что в клетках существуют системы, поддерживающие нативное состояние ее структур и реагирующие на любое повреждающее воздействие. В исследованиях Л. X. Эйдуса, продолжающихся в настоящее время, анализируется биофизический механизм неспецифической реакции клеток на повреждающие воздействия, к которым автор наряду с ионизирующей радиацией относит и действие различных радиопротекторов. Согласно развиваемой им гипотезе под влиянием повреждающего агента возникают однотипные изменения, включающие нарушение мембранного транспорта и соответствующих градиентов концентрации низкомолекулярных соединений, которые локально накапливаются в компартментах клеток, сорбируются на макромолекулах и изменяют их конформационную подвижность. В конечном итоге может наступить состояние паранекроза, обратимое при умеренно, повреждающих воздействиях. При этом изменяется соотношение скоростей конкурирующих между собой процессов реализации и репарации «скрытых повреждений» в уникальных структурах, ответственных за гибель клеток.
Представления о молекулярных механизмах неспецифической реакции клеток на повреждающие воздействия безусловно нуждаются в дальнейшей конкретизации. Однако сама постановка вопроса о неспецифичности рассматриваемых радиационной биофизикой процессов и систем позволяет рассматривать известные радиобиологические феномены «ак одно из проявлений общебиоло-гической реакции живых систем на любые повреждающие воздействия. Это означает, что методологические подходы, математический аппарат и методические приемы, накопленные радиационной биофизикой, приобретают важное значение для современной биологии в целом.
В кратком обзоре трудно перечислить все направления, по которым развивается радиационная биофизика. Много интересных исследований выполняется на простых модельных системах. Полученный на них экспериментальный материал пока еще находит-
ся в отрыве от работ, проведенных на клетках и целостном организме. В настоящее время намечается объединение этих крайних полюсов ценнейшей информации. Очевидно, в этом — бли-жайшее\будущее радиационной биофизики. Можно ожидать, что синтез фйзико-химичеоких, молекулярных и традиционных биологических Чрадиобиологических) подходов позволит вскоре ответить на ключевой вопрос радиационных исследований: каков механизм первичных пусковых процессов лучевого поражения и как наиболее эффективно управлять им.
ГЛАВА I
ПЕРВИЧНЫЕ ПРОЦЕССЫ ПОГЛОЩЕНИЯ ЭНЕРГИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОЦЕССА ПОГЛОЩЕНИЯ ЭНЕРГИИ
Прохождение через вещество фотонов рентгеновского или Y-излучения, потока нейтронов, электронов 'или ускоренных ядер элементов может привести ж поглощению части энергии этим веществом. При облучении живой материи мы наблюдаем определенные биологические последствия радиационного воздействия. Тестируемый биологический эффект — результат поглощения энергии излучения атомами и молекулами, составляющими клетки и ткани. Иначе говоря, в радиобиологии выполняется общий принцип Гроттгуеа, согласно которому только та часть энергии излучения может вызвать изменения в веществе, которая поглощается этим веществом; отраженная или проходящая энергия не оказывает никакого действия.
При прохождении ионизирующих частиц в веществе выделение энергии происходит в отдельных редкорасположенных микрообъемах, так как обмен энергией между фотонами излучения и атомами поглотителя носит дискретный вероятностный характер. Во многих облучаемых областях излучение вообще не передает энергию веществу. Эти области, следовательно, «не знают» о том, что облучение имело место, и испытывают лишь вторичное воздействие измененных структур, поглотивших энергию. Дискретный характер поглощения энергии приводит к необходимости представления ряда радиационных величин в терминах статистики. Статистические флуктуация радиационных величин существенны, следовательно, действие излучения должно определяться фактическими, а не средними значениями (математическим ожиданием) соответствующих величин. Поэтому стохастические величины рассматриваются в радиобиологии наряду с .нестохастическими.
Энергия, переданная излучением веществу, является стохастической величиной и определяется по формуле
e = 2?i—2?2—2Q, (1-1)
где E?i — сумма энергий (исключая энергию покоя) всех ионизирующих частиц, которые вошли в данный объем; hE2 — сумма энергий (исключая энергию покоя) всех ионизирующих частиц, которые покинули объем; EQ — сумма всей энергии, освобожденной в любых превращениях ядер и элементарных частиц
внутри объема, за вычетом суммы всей энергии, затраченной в этих превращениях.
Частное от деления е (энергии, переданной ионизирующим излучением элементу объема) на т (массу вещества в этом объеме) называют удельной переданной энергией Z:
Предыдущая << 1 .. 2 3 4 5 6 < 7 > 8 9 10 11 12 13 .. 144 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed