Научная литература
booksshare.net -> Добавить материал -> Биология -> Кудряшов Ю.Б. -> "Основы радиационной биофизики" -> 34

Основы радиационной биофизики - Кудряшов Ю.Б.

Кудряшов Ю.Б., Беренфельд Б.С. Основы радиационной биофизики — Москва, 1982. — 304 c.
Скачать (прямая ссылка): osnoviradicionnoybiofiziki1982.djvu
Предыдущая << 1 .. 28 29 30 31 32 33 < 34 > 35 36 37 38 39 40 .. 144 >> Следующая

Согласно уравнению (Ш-7) в области непрерывного спектра вероятность создания данного возбужденного состояния пропорциональна (df/dE)/E. Представив на основании косвенных данных
спектр сил осциллятора многоатомной молекулы, можно для нее построить спектр возбуждения как функцию R (df/dE)/Е, константа Ридберга R вводится для единства размерности. При таком определении спектр возбуждения совпадает со спектром первичных активаций, создаваемых заряженной частицей при ее первом столкновении. Анализ спектра возбуждения молекул, состоящих из атомов с Z< 10 и поэтому имеющих кроме валентных электронов только ^-оболочку, показал, что практически все возбуждения сосредоточены в области сравнительно больших значений Е. Непрерывный спектр поглощения молекул, в котором сосредоточена сила осциллятора, содержит в себе непрерывные спектры, обусловленные процессом ионизации и процессом диссоциации, а также спектр, создаваемый процессами, в которых возможна как ионизация, так и диссоциация молекулы, конкурирующие между собой (сверхвозбужденное состояние).
На рис. III-10 показан спектр возбуждения метана, построенный на основании экспериментальной оценки силы осциллятора молекулы.
Видно, что из всех первичных событий, которые не приводят к'ионизации, 45% составляют еверхвозбужденные состояния. Среднее значение энергии, соответствующее полосе сверхвозбуждения, равно приблизительно 15 эВ, т. е. более чем в 3 раза превосходит энергию диссоциации СНз—Н, равную 4,4 эВ. В этом сверхвоз-бужденном состоянии существует конкуренция между явлениями ионизации и диссоциации. Часть спектра, обозначенная как «ионизация», соответствует тем уровням возбуждения, которые всегда приводят к ионизации.
Анализ спектров возбуждения показывает, что для большинства органических молекул спектр сил осцилляторов лежит в области примерно 10—30 эВ над основным состоянием. Сила более длинноволновых осцилляторов невелика (исключение составляют молекулы, имеющие двойные и тройные связи: они могут возбуждаться и при меньших энергиях). В большинстве случаев спектры энергий осцилляторов превышают потенциал ионизации. Однако не все состояния с энергиями, превосходящими потенциал ионизации, непременно приводят к ионизации молекулы. «Сверхвозбужденные состояния» могут рассеивать энергию при внутримолекулярных изменениях или при диссоциации молекулы на два радикала. Только часть спектра, обозначаемая как «ионизация», относится к тем переходам, которые всегда приводят к потере электрона.
Знание спектра возбуждения для биологически активных макромолекул позволило бы оценить распределение и частоту переносимых к молекуле дискретных порций энергии. Теоретический расчет сил осцилляторов многоатомных молекул, как уже говорилось, задача практически невыполнимая. Отсутствуют и экспериментальные исследования, которые позволили бы представить спектр возбуждения макромолекул. Величину «пакетов энергии»,
передаваемых макромолекуле в результате одиночного взаимодействия, можно получить путем прямого измерения потери энергии электронами, проходящими через тонкие пленки, для которых вероятность более чем одного взаимодействия с электроном крайне мала. Для этого электроны с энергией 20 кЭв пропускали через тонкие пленки полимера (формваровая фольга) толщиной 13 нм и слои ДНК толщиной 200 нм. Исходя из величины неупругого рассеяния определяли частоту различных событий потери энергии электроном (рис. Ill-11). Вероятность более чем одного
0,5 и 0.4 ы 0,3
ЧЭ
t0'2 * 0,1

¦/ 10---13,0 sB
^ !

12
18 24
Энергия эВ
ЭО 36
Рис. 111—10. Спектр возбуждения метана (по Платцману, 1962)
Рис. Ill—И. Распределение потери энергии электронами, проходящими через тонкие слои органического вещества: 1 — электроны 20 КэВ проходят через слой Полимера «формвар» толщиной 130 А (по Раус, Симпсон, 1964)', 2 — электроны с энергией
150 КэВ проходят через пленку ДНК толщиной 2000 А (по Джонсону, Ри-меру, 1967)
события потери энергии при прохождении электроном слоя толщиной в 13 нм очень мала.
Поэтому данные рис. Ш-11,1 можно рассматривать как меру распределения частоты
различных событий потери энергии. Из рисунка видно, что чрезвычайно редко величина потери энергии меньше 10 эВ. С наибольшей частотой при каждом первичном взаимодействии переносится пакет энергии в 22эВ, в то время как среднее количество потери энергии на одно событие взаимодействия 60 эВ.
Спектры потери энергии в формваре и ДНК качественно схожи. Различие, вероятно, связано с неодинаковой толщиной пленок (технически очень трудно получить пленки ДНК тоньше 200 нм). При такой толщине слоя ДНК можно ожидать более одного события потери энергии. Следует также учесть, что оба рассматриваемых спектра включают и небольшое число лобовых соударений. Если сделать необходимые поправки на эти эффекты, то мы получим спектр возбуждения ДНК, который позволил бы оценить спектр сил осцилляторов этой молекулы.
Итак, прямые эксперименты показывают, что на одно событие потери энергии к макромолекулам в среднем переносится 60 эВ энергии излучения. Эта величина значительно превосходит потенциал ионизации молекулы. Перенос такого большого количества энергии с высокой вероятностью переводит молекулу в иоди-
Предыдущая << 1 .. 28 29 30 31 32 33 < 34 > 35 36 37 38 39 40 .. 144 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed