Научная литература
booksshare.net -> Добавить материал -> Биология -> Кудряшов Ю.Б. -> "Основы радиационной биофизики" -> 24

Основы радиационной биофизики - Кудряшов Ю.Б.

Кудряшов Ю.Б., Беренфельд Б.С. Основы радиационной биофизики — Москва, 1982. — 304 c.
Скачать (прямая ссылка): osnoviradicionnoybiofiziki1982.djvu
Предыдущая << 1 .. 18 19 20 21 22 23 < 24 > 25 26 27 28 29 30 .. 144 >> Следующая

Каждая ионизация, возникающая сг
в пределах облучаемых объектов, х имеет определенную вероятность а « оказаться причиной эффекта, но * | эта вероятность, при одноударном « 5 процессе не должна зависеть от §о0 времеии, прошедшего с мо- 4
Б
Рис. II—4. Инактивация вируса табачной мозаики у-лучами (по Ли, Смит, 1940). Кривая «доза — эффект» преобразована из соответствующей кривой на рис. II—1, В
Рис. II—5. Теоретические кривые выживаемости для объектов, инактивируемых в результате нескольких попаданий (по Дессауэру, 1954): а — в полулогарифмическом масштабе, б—в обычном масштабе. Цифры на кривых означают «ударность» процесса инактивации
мента предыдущей ионизации, ,ни от времени, отделяющего ее от последующей ионизации. Следовательно, эффект данной дозы должен определяться только ее величиной (т. е. числом возник-
ших актов ионизации); интенсивность излучения и распределение дозы во времени не должны играть никакой роли.
Выполнение второго требования означает, что плотноионизи-рующие излучения меиее эффективны, чем редкоионизирующие. Действительно, если одиночной ионизации достаточно для возникновения тестируемого эффекта, то частицы, производящие большое число ионов на единицу пути, вызовут в пределах мишени множество «ненужных» ионизаций. Редкоионизирующие излучения генерируют сгустки ионов, значительно удаленные друг от друга, и вероятность возникновения нескольких ионизаций в пределах мишени малого размера незначительна. Величина поглощенной дозы определяет общее число ионизаций, произведенных данным видом излучения в единице объема. При одноударном процессе большинство ионизаций, вызванных плотноионизирую-щим излучением, «бесполезно». Поэтому при равной дозе, т. е. при равном общем числе ионизаций, редкоионизирующие излучения окажутся более эффективны.
Напротив, если тестируемый эффект наступает вследствие большого числа ионизаций в пределах мишени (многоударный механизм инактивации), то частицы с высокой плотностью ионизации окажутся значительно эффективнее, чем редкоионизирующие.
Кривые «доза—эффект» при многоударном механизме инактивации отличаются от экспоненциальных дозовых кривых, наблюдаемых в случае одноударного процесса. В полулогарифмическом масштабе семейство дозовых кривых для случая п = 2, 3, ..., k представлено на рис. II-5. Чем больше «ударность» мишени, тем заметнее «плечо» — начальный, более горизонтальный участок кривой. Вслед за плечом следует переход к прямолинейному участку, наклон которого совпадает с наклоном соответствующей одноударной кривой. Вид дозной кривой при многоударном механизме инактивации определяется тем, что при малых дозах лишь небольшое число объектов может испытать требуемое число попаданий (k), а все остальные — не более (k—1) попаданий. По достижении (&—1) попаданий во все или большинство объектов возникает ситуация, при которой последнее, й-тое, попадание приводит 'К тестируемому эффекту. Начиная с этой дозы кривая принимает вид, характерный для одноударного процесса.
Формально такие кривые могут быть получены суммированием всех объектов, получивших 0, 1, 2, ..., (п—1) попаданий; согласно распределению Пуассона их точное число выражается соотношением (II-1), а доля выживших, т. е. претерпевших от 0 до (п—1) попаданий, определяется следующей формулой:
где N — число выживших, a N0 — общее число индивидов в облученной совокупности объектов. Уравнение для одноударного процесса легко получить из (II-11), подставив п = 0.
(II-11)
На основании принципа попадания и концепции мишени можно анализировать кривые «доза—эффект», полученные в эксперименте. В зависимости от вида объекта и характера излучения получают различные дозные кривые — от простых экспоненциальных до сигмоидальных с различной величиной плеча. Наиболее надежно поддаются формальному анализу одноударные радиобиологические реакции, в которых попаданием служит одиночная ионизация или рой ионов в пределах мишени. В этом случае, располагая кривыми «доза — эффект» для излучений с различными значениями ЛПЭ, можно рассчитать размеры и число мишеней, отражающие размеры и число тех элементарных биологических структур, поражение которых вследствие ионизации приводит к регистрируемому биологическому эффекту. Подобное применение теории попадания позволило впервые определить размеры некоторых макромолекул, вирусов, генов, получить сведения о внутренней структуре бактериальных спор и т. д.
Кривые «доза—эффект», полученные при облучении клеток, как правило, не удовлетворяют требованиям одноударного процесса. Для интерпретации кривых «доза—эффект» с различной величиной плеча используют сложные математические построения, основанные на различных гипотетических моделях. Ранее мы упоминали, что такого рода кривые можио объяснить многоуд арностью процесса. Другая возможность формального описания сигмоидальных кривых «доза—эффект» состоит в том, что предполагают наличие в объекте нескольких чувствительных объемов —» мишеней — и что реакция наступает лишь после того, как все они получили определенное число попаданий. Согласно теории вероятностей уравнение, описывающее «кривую гибели» для системы из т мишеней, имеет вид
Предыдущая << 1 .. 18 19 20 21 22 23 < 24 > 25 26 27 28 29 30 .. 144 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed