Научная литература
booksshare.net -> Добавить материал -> Биология -> Кудряшов Ю.Б. -> "Основы радиационной биофизики" -> 20

Основы радиационной биофизики - Кудряшов Ю.Б.

Кудряшов Ю.Б., Беренфельд Б.С. Основы радиационной биофизики — Москва, 1982. — 304 c.
Скачать (прямая ссылка): osnoviradicionnoybiofiziki1982.djvu
Предыдущая << 1 .. 14 15 16 17 18 19 < 20 > 21 22 23 24 25 26 .. 144 >> Следующая

—А-> А+ + ег; е- + АА~ и возбуждение атомов: —А->А*.
На ионизацию атомов Н, N, О, С, S, Р затрачивается 10— 15 эВ. Значительно меньше энергии необходимо для их возбуждения, поэтому летящая заряженная частица способна возбуждать атомы, расположенные на значительном расстоянии от ее трека. На один ионизированный атом приходится несколько возбужденных. Поэтому одна пара ионов образуется при поглощении около 34 эВ — величины, значительно большей потенциала ионизации. Избыток энергии растрачивается на возбуждение.
Сведения о начальных процессах поглощения энергии излучения необходимы для выяснения механизмов радиобиологических процессов. Возникающие на физической стадии ионизированные и возбужденные молекулы запускают сложную цепь реакций, приводящих в конечном счете к тестируемому биологическому эффекту. Поэтому информация о первичных событиях (число ионизаций, характер их распределения и т. д.) служит отправной точкой биофизического анализа механизмов биологического действия ионизирующих излучений.
В качестве примера рассмотрим несколько упрощенную картину ионизации, возникающую в клетке в результате облучения суспензии клеток а-частицами с энергией 2,5 МэВ и рентгеновскими квантами с энергией 200 кэВ. Так как поглощение энергии ионизирующих излучений происходит в результате дискретных событий, при которых энергия частицы или фотона с определенной вероятностью переносится атомам или молекулам поглотителя, можно говорить об определенной вероятности «попадания» фотона или частицы в данный объект, например в клетку. Вероятность попадания в данном случае соответствует вероятности абсорбции энергии фотона или частицы в пределах клетки. Величина интегральной поглощенной дозы, которую определяют при облучении суспензии' клеток, показывает, какое число «бомбардирующих» данный объем частиц оставляет в пределах этого объема свою энергию. Существует такая доза D, при которой каждая клетка испытывает в среднем одно попадание. В случае а-частиц с энергией 2,5 МэВ в результате одного попадания в клетке формируется короткий трек длиной 13 мкм с очень высокой плотностью ионизации — в среднем образуется 2,5 тыс. пар ионов на 1 мкм пути. Большая часть ионизаций представляет собой скопления из одной-двух пар ионов, практически непрерывно следующих друг за другом вдоль прямолинейного трека частицы; некоторая часть ионизаций произведена высокоэнергетическими 8-электронами, которые ответвляются от основного трека во всех направлениях (суммарная длина пробега 6-электронов вдвое превышает путь а-частицы). В принципе, в клетке может существовать некая микроструктура (мишень), поражение которой прямо или косвенно приведет к конечному биологическому эффекту. Например, глубокая деградация «акого-либо мембранного участка может ‘резко нарушить ионный гомеостаз и привести к быстрой гибели клетки, а поражение определенного участка хромосомы может привести к
метаболическим изменениям, которые постепенно приведут к нарушению жизненно важных функций и гибели клетки. Априори можно предполагать, что прохождение трека а-частицы через «мишень» приведет к ее поражению вследствие ионизации большого числа атомов, составляющих такую мишень.
Если же клетка поглотила фотон рентгеновского излучения с энергией 200 кэВ, то это означает, что порожденный в пределах клетки свободный электрон (он возник в результате первичной ионизации какого-либо атома) израсходовал запас кинетической энергии «а ионизацию и возбуждение субклеточных структур. Вероятнее всего, что рассматриваемый рентгеновский квант (200 кэВ) высвободил электрон ,в результате комптоновского взаимодействия. Тогда средняя энергия электрона около 45 кэВ, а плотность ионизации — 8,5 пары ионов m 1 мкм пути. При такой низкой плотности ионизации в пределах мишени малого размера может возникнуть в лучшем случае одна ионизация (толщина клеточной мембраны около 0,01 мкм, хромосомы — около 0,1 мкм). Если при этом тестируемый биологический эффект (например, разрыв хромосомы) все же наблюдается, то это можно объяснив тем, что для его возникновения достаточно одной ионизации в пределах определенной структуры, так называемой мишени.
Такого рода соображения открывают широкие возможности для формального анализа первичных процессов, приводящих к тестируемому биологическому эффекту облучения. Проводя соответствующую математическую обработку кривых, отражающих зависимость биологического эффекта от поглощенной дозы излучения, можно попытаться оценить минимальное количество актов ионизации, достаточное для возникновения эффекта, примерный размер мишени, в которой должны произойти акты ионизации, и т. д. Такой анализ (подробнее он будет рассмотрен в следующей главе) позволяет получить важную информацию о характере ионизации, которая произошла в объекте на начальной стадии действия излучения и спустя определенное время (секунды, часы или даже месяцы) приведет к конечному биологическому эффекту. Выяснение механизма биологического действия ионизирующих излучений состоит в расшифровке всей последовательности процессов, которая начинается с возникновения в облученном объекте определенного числа ионизированных и возбужденных молекул, составляющих биологический субстрат.
Предыдущая << 1 .. 14 15 16 17 18 19 < 20 > 21 22 23 24 25 26 .. 144 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed